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Supplementary Note 1: Applied magnetic fields

Precessing magnetic field is defined by two angles. Precession angle Ψ is the angle between the 

axis of precession (w) and the magnetic field vector (B), and the tilt angle ϑ is the angle between 

the precession axis and the normal vector to the planar substrate surface (i.e., z-axis) (Fig. 1a). 

Applied magnetic field is varied in time by revolving the magnetic field vector about the precession 

axis, with angular velocity Ω via the following mathematical operation:

(Eq. S1)𝐵(𝑡) = 𝐵0(𝐼 + sin (Ω𝑡)[𝑤] × + (1 ‒ 𝑐𝑜𝑠(Ω𝑡))[𝑤] 2
× )𝑛0

where  is the magnetic field magnitude, t is time, I is the identity matrix,  is the 𝐵0 = ‖𝐵‖ [ ] ×

cross-product operator, w = (0, sin(ϑ), cos(ϑ)), and n0 = (0, sin(ϑ + Ψ), cos(ϑ + Ψ)) is the magnetic 

field vector at t = 0.

Supplementary Note 2: Magnetic interactions between chains

For calculation of magnetic interaction forces between two chains (Figs. 2a-b and S2), we 

considered that each chain consists of n paramagnetic particles and precess by following the 
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magnetic field given by Eq. S1. Distance vector pointing from the jth particle to ith particle is 

denoted by Rij = Rj – Ri, where Ri and Rj denote their respective position vectors. The induced 

magnetic dipole moment mi of each particle is given by , where vp is the particle 𝑚𝑖 = 𝑣𝑝𝜒𝐵/𝜇0

volume, χ is the volumetric magnetic susceptibility and  is the vacuum permeability. The 𝜇0

interaction force between two magnetic dipoles is calculated with the following equation1,

𝑓𝑚,𝑖𝑗 =
3𝜇0

4𝜋𝑅4(𝑅𝑖𝑗(𝑚𝑖.𝑚𝑗) + 𝑚𝑖(𝑅𝑖𝑗.𝑚𝑗) + 𝑚𝑗(𝑅𝑖𝑗.𝑚𝑖)

𝑅
‒

5𝑅𝑖𝑗(𝑚𝑖.𝑅𝑖𝑗)(𝑚𝑗.𝑅𝑖𝑗)
𝑅3 )

(Eq. S2)

Following, the time-averaged magnetic force acting between two chains can be calculated 

by summing the interaction forces between particles and averaging over a precession cycle,

(Eq. S3)
𝐹𝑚 = Ω

1/Ω

∫
0
∑
𝑖 ≠ 𝑗

𝑓𝑚,𝑖𝑗(𝑡)𝑑𝑡

where the summation is performed over each particle pair i, j belonging to chains. Observing Eqs. 

S2 and S3, the strength of the magnetic force between two chains varies with the following 

proportionality:

(Eq. 
𝐹𝑚 ∝ 𝑛2( 4𝜋

3𝜇0

(𝑎3𝜒𝐵)2

𝑟4 )
S4)

where r is the distance between two chains. Therefore, for a pair of chains separated by a distance 

of one chain length (r = 2na), a characteristic magnetic interaction force can be defined as:
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(Eq. S5)
𝐹0 = ( 𝜋

12𝜇0

(𝑎𝜒𝐵)2

𝑛2 )
Supplementary Note 3: Numerical model for simulating flow fields around a single chain

Flow field generated by the precession of a chain near a wall was calculated with simulations using 

Stokes flow singularities. Flow velocity at a given position in space vh (r) due to a collection of 

particles on which a force fj (Rj) (i.e., a Stokeslet) acts can be obtained with the following equation,

(Eq. S6)
𝑣ℎ(𝑟) = ∑

𝑗

𝐽(𝑟,𝑅𝑗).𝑓𝑗(𝑅𝑗)

In an unbounded fluid,  is given by the Oseen tensor,𝐽(𝑟,𝑅𝑗)

(Eq. S7)
𝐽(𝑟,𝑅𝑗) =

1
8𝜋𝜇( 𝐼

|𝑟 ‒ 𝑅𝑗|
+

(𝑟 ‒ 𝑅𝑗)⨂(𝑟 ‒ 𝑅𝑗)

|𝑟 ‒ 𝑅𝑗|3 )
Where μ is the dynamic viscosity of the fluid. Wall effects can be accounted for by modifying Eq. 

S7 through the image system of hydrodynamic singularities satisfying no-slip boundary conditions 

at the surface, which was formulated in the work of Blake and Chwang2 and was also used in our 

simulations. The image system of a Stokeslet at Ri = (x, y, h) near an infinite planar no-slip wall 

consists of an opposite signed Stokeslet, and an additional Stokes-doublet and a source doublet 

positioned at Rim,i = (x, y, -h), where h indicates the distance from the wall (at z = 0)2. Flow 

velocities presented in Figs. 2c-d and Fig. S3 were obtained by calculating time-varying flow field 

generated by a chain and taking its average over a precession cycle.

Supplementary Note 4: Numerical model for simulating the chain dynamics
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For simulating the dynamics of motile self-assembled chains (Figs. 2e-h and S4, Video S2), we 

model the dynamics of the collection of particles that constitute the chains, whose equation of 

motion is given by,

(Eq. S8)�̇�𝑖 = 𝑀𝑖𝑗.(𝑓𝑚,𝑗 + 𝑓𝑏,𝑗 + 𝑓𝑤,𝑗 + 𝑓𝑔,𝑗)

where interactions between particles i and j arise from magnetic dipole-dipole forces (fm), particle-

particle (fb) and particle-wall (fw) excluded volume forces, and gravitational (fg) forces. Magnetic 

dipolar interactions between particles are calculated via Eq. S2. The grand mobility tensor  𝑀

couples the velocities of particles ( ) to the forces acting on each particle through contributions �̇�𝑖

of self and pair hydrodynamic mobility tensors that account for no-slip boundary conditions at the 

substrate surface3. Simulations implement the mathematical expressions for the grand mobility 

tensor that were provided by Swan and Brady3. Following the approach presented by Sing et al.4, 

particle-particle and particle-wall excluded volume forces were modeled with modified Lennard-

Jones force terms,

(Eq. S9)
𝑓𝑏 =

𝜖
𝑟 ‒ 2𝑎(( 𝜎

𝑟 ‒ 2𝑎)12 ‒ ( 𝜎
𝑟 ‒ 2𝑎)6)

(Eq. S10)
𝑓𝑤 =

𝜖
ℎ ‒ 𝑎(( 𝜎

ℎ ‒ 𝑎)12 ‒ ( 𝜎
ℎ ‒ 𝑎)6)

with σ = 0.1a, h is the distance of a particle from the wall, and ϵ is sufficiently small to neglect 

attractive terms. fg = - Δρvpg where Δρ is the buoyant density of particles, and g is the gravitational 

acceleration. Eq. S8 was integrated with an explicit Euler scheme to obtain the trajectories of each 

particle in chains. Each cycle of chain rotation was divided into 5×105 time steps, and simulations 

were performed for 270 cycles (~30 seconds of real time experiments).
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Table S1. Simulation parameters

A 2.5 μm χ 0.5

B0 10 mT Δρ 0.05 g/cm3

Ω /2π 3 Hz μ 0.894 mPa.s

Supplementary Note 5: Reduced-order discrete chain model

For simulating the dynamics of clusters consisting of many chains, calculating the motion of each 

particle separately is computationally intensive. For this reason, we developed a reduced order 

simulation that models the dynamic of the collection of chains that constitute the cluster, in which 

each chain is treated as a discrete point (Fig. S6 and Video S7). This model accounts for the time-

averaged magnetic interactions and near-wall hydrodynamic self-propulsion and interactions 

between chains. The equation of motion for each chain is given by

(Eq. S11)
�̇�𝑖 = 𝑣0,𝑖 + ∑

𝑗 ≠ 𝑖

𝑣ℎ,𝑖𝑗 + ∑
𝑗 ≠ 𝑖

𝑣𝑚,𝑖𝑗

where the velocity of ith chain ( ), is the sum of its self-propulsion velocity, v0,i, the velocity of �̇�𝑖

the hydrodynamic flow generated by all its jth neighbours at the position of ith chain, vh,ij, and the 

displacement velocity due to the magnetic forces imposed by its neighbors, vm,ij.

Self-propulsion of a chain arises from its self-advection under the hydrodynamic flow 

generated by its precessing motion. Similarly, a chain is also advected by the flow generated by 

its neighbors. The essential features of hydrodynamic flows were captured by modeling each chain 

as a rotlet singularity above a solid wall. Specifically, a rotlet solution provides the hydrodynamic 

velocity field generated by a point torque at Stokes regime. We consider that each chain has an 
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effective hydrodynamic radius ah, and its rotation is given with the angular velocity vector Ω. The 

axis of rotation is tilted from the z-axis (i.e., normal to the plane of the substrate) by angle ϑ, 

therefore, the angular velocity vector can be decomposed into two components which are parallel 

and perpendicular to the substrate, such that Ω = (0, Ω||, Ω⊥) where Ω|| = Ω.sin(ϑ) and Ω⊥ = Ω.cos(ϑ). 

Chains are located at a distance h from the wall at r = (x, y, h). The solid wall imposes 

hydrodynamic no-slip boundary conditions, which can be accounted through the image system 

consisting of a counter-rotating rotlet, and an additional stresslet and a source doublet positioned 

at rim = (x, y, -h), which was formulated in the work of Blake and Chwang2. Thus, the flow velocity 

at the position of the ith chain is calculated by the following expressions2,5:

(Eq. 
𝑣0𝑥,𝑖 =

Ω ∥ ,𝑖𝑎
5

ℎ,𝑖

8ℎ4
𝑖

S12)

(Eq. 
𝑣ℎ𝑥,𝑖𝑗 = Ω ∥ ,𝑗𝑎

3
ℎ,𝑗(6ℎ𝑖

(𝑥𝑗 ‒ 𝑥𝑖)
2

𝑟 5
𝑖𝑚,𝑖𝑗

‒
ℎ𝑗 ‒ ℎ𝑖

𝑟3
𝑖𝑗

+
ℎ𝑗 ‒ ℎ𝑖

𝑟 3
𝑖𝑚,𝑖𝑗

) + Ω ⊥ ,𝑗𝑎
3

ℎ,𝑗(𝑦𝑗 ‒ 𝑦𝑖

𝑟3
𝑖𝑗

‒
𝑦𝑗 ‒ 𝑦𝑖

𝑟 3
𝑖𝑚,𝑖𝑗

)
S13)

(Eq. S14)
𝑣ℎ𝑦,𝑖𝑗 = Ω ∥ ,𝑗𝑎

3
ℎ,𝑗(6ℎ𝑖

(𝑥𝑗 ‒ 𝑥𝑖)(𝑦𝑗 ‒ 𝑦𝑖)

𝑟 5
𝑖𝑚,𝑖𝑗

) + Ω ⊥ ,𝑗𝑎
3

ℎ,𝑗(𝑥𝑖 ‒ 𝑥𝑗

𝑟3
𝑖𝑗

‒
𝑥𝑖 ‒ 𝑥𝑗

𝑟 3
𝑖𝑚,𝑖𝑗

)
where  and 𝑟𝑖𝑗 = ((𝑥𝑖 ‒ 𝑥𝑗)2 + (𝑦𝑖 ‒ 𝑦𝑗)2 + (ℎ𝑖 ‒ ℎ𝑗)2)1/2

.𝑟𝑖𝑚,𝑖𝑗 = ((𝑥𝑖 ‒ 𝑥𝑗)2 + (𝑦𝑖 ‒ 𝑦𝑗)2 + (ℎ𝑖 + ℎ𝑗)2)1/2

The first role of Ω|| is self-propulsion, a chain rotating about the y-axis would translate in 

the x-direction, which is expressed in Eq. S12. The hydrodynamic velocity field generated by Ω|| 
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in the x - y plane is displayed in Fig. S6a. Flow field has a positive velocity in the x-direction 

around the rotlet. This leads to an enhancement of translation velocity in the x-direction for 

neighboring chains as a result of being advected by the flows generated by each other. The Ω⊥ 

component of rotation results in a rotating flow in the x - y plane (Fig. S6b), and is the main 

contributor to the rotation of chains around each other, and leads to the rotation of the cluster.

To calculate vm,ij, we modeled the magnetic interaction force between chains with a time-

averaged force that acts along the line connecting chain centers. Magnetic interaction force 

combines an attractive dipolar term and a repulsive multipolar term, which is given via the 

following equation:

(Eq. S15)
𝐹𝑚,𝑖𝑗 = [ 𝐴

𝑟4
+

𝐵

𝑟𝑘]�̂�

where A and B are the coefficients for dipolar and multipolar contributions, respectively, k is an 

effective exponent that tunes the stiffness of the multipolar term and  is the unit vector pointing �̂�

from chain i to j. Dipolar interaction has a 1/r4 rate of decay, and multipolar interaction has an 

effective decay rate of 1/rk.

For determination of A, we consider the time-averaged effective dipolar interactions 

between two chains that precess about the z-axis with angle Ψ. The time averaged dipolar coupling 

strength under precession is given by6

(Eq. S16)
𝐴 =

3𝜋
4𝜇0

𝑚𝑖𝑚𝑗(3cos Ψ ‒ 1
2 )

where the total dipole moment mi is given by mi = nm, where n is the number of particles in the 

chain and m is the magnetic dipole moment of a single particle. The sign of the term in brackets 
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depends on the precession angle, which leads to a repulsive interaction (A > 0) for 0◦ ≤ Ψ < 54.7◦, 

and an attractive interaction (A < 0) for 54.7◦ < Ψ ≤ 90◦). As discussed in the manuscript, a 

combination of long-range attraction and a short-range repulsion results in a steady-state distance, 

r*, where magnetic interaction force between chains equates to zero, Fm(r*) = 0. Consequently, we 

obtain , which allows us to re-write Eq. S15 as

𝐵
𝐴

=‒ 𝑟 ∗ 𝑘 ‒ 4

 . (Eq. S17)
𝐹𝑚,𝑖𝑗 =

𝐴

𝑟4[1 + (𝑟 ∗

𝑟 )𝑘 ‒ 4]�̂�

In the simulations, we use the functional form given by Eq. S17, which lets us specify r* as an 

input parameter. Eq. S17 tells us that, if A and r* are known, then the only remaining unknown is 

k, which tunes the stiffness of the repulsive multipolar interaction. We found that setting k to 

different values in the range of 6 to 8 produce qualitatively similar results in our simulations. 

Lastly, vm,ij is calculated by multiplying the magnetic interaction force with the effective mobility 

of a chain:

  . (Eq. S18)𝑣𝑚,𝑖𝑗 = (6𝜋𝜇𝑛𝑎) ‒ 1𝐹𝑚,𝑖𝑗

The reduced-order model successfully captures the essential trends observed in 

experiments: Chains form cohesive clusters with a characteristic steady-state distance between 

neighbors, clusters performed rotation and translation, and the cluster velocity increased with 

number of chains. An example of simulated trajectories is displayed in Fig. S6c and Video S7. In 

order to achieve a quantitative fit between the model and the experiments for translation and 

angular velocity of clusters, we need to tune two parameters ah and h (Figs. S6a-b). An 

experimental determination of ah and h is difficult due to the anisotropic shape of chains. Also, a 
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simplistic estimation by setting them to half chain length (L/2 = na) yields predictions far from the 

experimental observations. For this reason, we performed simulations for different values of h and 

re-scaled the simulated values via ah to match the experimental values. Changing h has a small 

effect on the translational velocity of clusters (Fig. S6a), and shifts the curve for the angular 

velocity of clusters by a prefactor approximately proportional to h3/2 without changing the shape 

of the curve (Fig. S6b). The curves in Fig. 5c correspond to h/L = 0.3 and ah/L ~ 0.26. 

Supplementary Note 6: Data analysis

Experimentally, we measure the set of coordinates for the collection of chains i, {ri (t)}, where ri(t) 

is the position of the center of chain i at different time points t. To find the internal position of 

chains within the cluster at a desired time point, we need to subtract the mean cluster position and 

rotation from the set of chain coordinates7. Mean cluster position can be obtained by taking the 

average of chain coordinates, . Therefore, chain positions with respect to 
𝑟𝑐(𝑡) = (1/𝑁)

𝑁

∑
𝑖

𝑟𝑖(𝑡)

the moving cluster center can be obtained by, yi (t) = ri (t) – rc (t). To find the optimal mapping 

between two sets of chain positions measured at consecutive time points, we are required to find 

the best rotation matrix  that minimizes the error function, , where 𝑅(𝑡)

𝑁

∑
𝑖

[𝑦𝑖(𝑡 + 1) ‒ 𝑅(𝑡)𝑦𝑖(𝑡)]2

t + 1 denotes the next time point8. Finally, internal positions of chains can be obtained after 

subtracting mean cluster translation and rotation as

(Eq. S19)𝑥𝑖(𝑡) = 𝑅𝑇(0)…𝑅𝑇(𝑡 ‒ 2)𝑅𝑇(𝑡 ‒ 1)𝑦𝑖(𝑡) .
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Rotational order: Rotational order parameter quantifies the degree of coherence of rotational 

motion of chains about the cluster center. Rotational order parameter is calculated with the 

following equation7,

(Eq. S20)
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 =

1
𝑁‖ 𝑁

∑
𝑖 = 1

𝑦𝑖(𝑡) × 𝑣𝑖(𝑡)

|𝑦𝑖(𝑡) × 𝑣𝑖(𝑡)|‖
where  is the chain velocity after subtracting the translation velocity of the 𝑣𝑖 = 𝑦𝑖(𝑡 + 1) ‒ 𝑦𝑖(𝑡)

cluster center. Perfectly coherent rotation results in a rotational order parameter equal to 1, and to 

0 for non-coherent motion.

Connectivity: Connectivity is calculated based on the idea that strength of cohesive magnetic 

interactions that holds the chains together would be proportional to the total attractive magnetic 

dipolar potential in a cluster with the below formula:

(Eq. S21)
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = ∑

𝑖 ≠ 𝑗

𝑛𝑖𝑛𝑗

𝑟3
𝑖𝑗

where  is the distance between two chains and  is the number of particles in chains i, j.𝑟𝑖𝑗 𝑛𝑖,𝑗

Mean-squared displacement: Mean-squared displacement (MSD) is calculated with the standard 

formula of

(Eq. S22)𝑀𝑆𝐷(𝜏) = 〈‖𝑥𝑖(𝑡 + 𝜏) ‒ 𝑥𝑖(𝑡)‖2〉

where  is the ensemble average over chains i, and time t, and  is the lag time between two time 〈 ∙ 〉 𝜏

points. “Fluctuation” quantifies the mean-squared positional fluctuation of chains, i.e. deviations 

around their mean positions in the cluster. Fluctuation is calculated with the following formula9:
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(Eq. S23)𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 = 〈‖𝑥𝑖(𝑡) ‒ �̅�𝑖‖2〉

where  is the ensemble average over chains i and time t, and  is the mean position of the ith 〈 ∙ 〉 �̅�𝑖

chain inside the cluster.
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Figure S1. Experimental characterization of pairwise chain interactions (a) Schematic of the 

two-chain system, r is pairwise distance between chains, Vp is pair velocity and ωp is pair angular 

velocity. (b) Pairwise distance measurements under diverging (Ψ = 60◦), cohesion (Ψ = 68◦) and 

collapsing (Ψ = 75◦) states, where r* denotes the dynamic steady-state distance. 
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Figure S2. Pairwise magnetic interactions between chains. (a) Schematic describes the 

configuration between two chains used in simulations calculating magnetic interaction forces Fm 

along the direction of vector r = (x, y, 0) pointing from the first chain at the origin to the second 

chain. (b) Simulated magnetic interaction states between two chains (number of particles per chain, 

n = 3). States are categorized as follows, far-range attraction (Fm < 0 for r/L = 2), short-range 

repulsion (Fm > 0 for r/L = 1), cohesive interaction (Fm < 0 for r/L = 2 and Fm > 0 for r/L = 1), 

anisotropic attraction and repulsion (Fm varies between attraction and repulsion at different 

directions). (c) Typical examples from simulations show how the magnetic interactions differ 

between states. Red curve is where Fm = 0, a closed red curve is indicative of cohesive interactions. 

Arrows indicate the direction of magnetic interaction forces at a given r. Color bar indicates the 

strength of magnetic force, Fm/F0. (d) Magnetic interaction force plots for the cohesive states used 

in the experiments. (e, f) Magnetic interaction states for n = 2 and n = 5 show that the range of Ψ 

for cohesive interactions change. (g) Steady-state distance, Fm(r*) = 0, changes with n.
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Figure S3. Flow velocity around a precessing chain near a surface. Simulated flow velocity is 

sampled along the line x > 0, y = 0, z = 0.5L corresponding to the coordinate system shown in Figs. 

2c-d. (a) Velocity of the rotational flow in y direction resulting from the chain precession about an 

axis perpendicular to the substrate for different precession angles Ψ. (b, c) Flow velocity in x 

direction when the chain precession axis is tilted by angle ϑ. (b) ϑ = 5◦
 for varying Ψ, (c) Ψ = 70◦ 

for varying ϑ. 
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Figure S4. Experimental and simulated pairwise chain dynamics for different chain lengths. 

(a) Experimental snapshot of a pair of chains with different number of particles, n. Scale bar is 10 

μm. (b) Pairwise steady-state distance, r*, for different n and Ψ. Experimental measurements are 

compared to simulations including only magnetic interactions (Sim. mag.) and simulations that 

combined magnetic and hydrodynamic interactions (Sim.). Background color indicates the range 

of Ψ for experimentally observed cohesive self-organization state (n = 2, blue, n = 3, red, n = 4, 

green). (c) Pair translation velocity and (d) pair angular velocity measured from experiments and 

calculated with simulations. ϑ = 5◦ for all figures. 



17

Figure S5. Experimentally measured single-chain velocities for different number of beads (n) 

and tilt angles (ϑ) at Ψ = 68◦. Markers indicate the means obtained over time-series measurements.

Figure S6. Mean neighbor distance does not vary significantly with cluster size (N). Nearest 

neighbors of each chain are detected via Delaunay triangulation. Error bars represent standard 

deviation of neighbor distances. Distances are normalized to the average chain length, < L >.
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Figure S7. Reduced-order discrete chain model for simulating the cluster dynamics. 

Hydrodynamic field generated by each chain is modeled with a rotlet singularity above a planar 

no-slip wall. (a) Flow generated by a rotlet whose axis of rotation is aligned parallel to the substrate 

(Ω||) and (b) perpendicular to the substrate (Ω⊥). Colorbar indicates normalized flow velocity 



19

where ah is the effective hydrodynamic radius of the chain. (c) A typical set of chain trajectories 

under cohesive interactions, as produced by the reduced order model. The diameter of each circle 

is equal to r*, the steady-state distance term in Eq. S17. Reduced-order model captures 

experimentally observed changes in (d) cluster translation velocity (V) and (e) angular velocity 

with increasing cluster size N. v0 is the velocity of an individual chain. Model is tuned for different 

heights of chains from the substrate surface, h. 

Figure S8. Photo of the experimental setup composed of five electromagnetic coils mounted on 

an inverted optical microscope. 
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Figure S9. Schematic of microchannel design used in experiments. Inlet and outlet ports in PMMA 

top piece and channel outline in double sided adhesive tape were laser micromachined. All parts 

were then assembled, forming the microchannel.  
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Supplementary Videos

Video S1. Self-organizing cohesive microrobot collectives with multipolar interactions. Ψ 

denotes precession angle and ϑ denotes tilt angle of the time-varying magnetic field.

Video S2. Reversible assembly, clustering, de-clustering, and disassembly of chain 

microrobots and clusters.

Video S3. Simulated pair dynamics. Motion of two chains interacting magnetically and 

hydrodynamically above a solid substrate (at z = 0).

Video S4. Motion of homogeneous clusters. Clusters formed by a varying number of chains (N) 

are actuated at two different precession angles Ψ. Chain distances decrease with Ψ, and clusters 

translate faster with increasing N and Ψ.

Video S5. Motion and internal dynamics of heterogeneous clusters. A planar solid surface is 

located at z=0. Clusters with a higher level of heterogeneity (Het2) dissolve when actuated with ϑ 

= 5◦, but remain intact when translation velocity decreased at ϑ = 3◦. Experimentally measured internal 

chain positions are displayed with (bottom row) and without (top row) subtracting cluster rotation. Colors 

indicate number of particles in the corresponding chain, red: 2 particles, blue: 3 particles, green: 4 particles. 

Spatiotemporal organization of chains indicate a solid-like ordering for stable clusters.

Video S6. Formation of large groups.

Video S7. Cluster velocity increases with group size (N). Experimentally measured internal chain 

positions are displayed with (bottom row) and without (top row) subtracting cluster rotation. Colors indicate 

number of particles in the corresponding chain, red: 2 particles, blue: 3 particles, green: 4 particles, magenta: 

5 particles. Large positional fluctuations of chains indicate a transition towards liquid-like behavior for 

larger clusters.

Video S8. Simulated cluster dynamics with the reduced-order model.


