Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supporting information

Diffusion of Nanoparticles within a Semidilute Polyelectrolyte Solution

Kavindya K. Senanayake, Namita Shokeen, Ehsan Akbari Fakhrabadi, Matthew W. Liberatore, and Ashis Mukhopadhyay

SI1: Concentration calculations for PAA samples

Density of PAA =1.150 g/ml at 25°C1

Calculated concentrations

Weight fraction (w/w)	C (kg/m ³)	Volume fraction (v/v)
0.00042	0.42	0.00037
0.00083	0.83	0.00072
0.00125	1.25	0.00109
0.0017	1.72	0.00148

SI2: Fitting of autocorrelation function in Fig. 1

$$G(\tau) = \frac{G(0)}{1 + (\frac{8D\tau}{\omega_0^2})\sqrt{1 + (\frac{8D\tau}{z_0^2})}}$$

D: Diffusion coefficient

 ω_o : Half-width of laser focus

z_o: Half-height of laser focus

SI3: Experimental Diffusion coefficient

Experimental diffusion coefficients D of AuNPs (in μ m²/s) as measured by fluorescence

correlation spectroscopy

	d=5 nm		d=20 nm		d=40 nm	
Φ (x10 ⁻³)	D	δD	D	δD	D	δD
0	102	5	23	1	11	1
0.37	51	1	14	1	7	1
0.72	40	3	11	1	4	1
1.09	30	2	9	0.4	5	0.3
1.48	23	1	7	1	3	0.2

SI4: Fitting parameters β and v using Phillies equation: D=Do exp(- $\beta \phi^{\nu}$)

d (nm)	υ	β
5	0.53	4.00
20	0.64	4.10
40	0.68	4.41

SI5: Debye screening length (*l*) Calculations

$$\frac{1}{l} = \sqrt{\frac{\sum_{i}^{Z_{i}^{2}} e^{2} \alpha n_{i}(0)}{\varepsilon_{r} \varepsilon_{0} k_{B} T}}$$
$$\frac{1}{l} = \sqrt{\frac{\sum_{i}^{Z_{i}^{2}} e^{2} \alpha C_{i} N}{\varepsilon_{r} \varepsilon_{0} k_{B} T}}$$

where,

i= species of ions

 $n_i(0)$ = density of ions at $\vec{r} = 0$

 z_i = valance of charge (=1)

 $C_{i=H^+}$ concentration

 ε_r = relative permittivity (=80)

```
\varepsilon_0 = permittivity in vacuum (8.85*10<sup>-12</sup> F/m)
```

```
N= Avogadro's number (=6.022*10<sup>23</sup> mol<sup>-1</sup>)
```

e= charge of the electron (=1.609 *10⁻¹⁹ C)

 k_{B} = Boltzmann constant (=1.38 * 10⁻²³ J/K)

T= absolute temperature (=295 K)

 α = Ionization factor²

Assumptions:

one monomer emits one H⁺ ion

$$pH = -\log[H^+]$$

 $[H^+] = - antilog(pH)$

$$l = \frac{1.36 * 10^{-8}}{\sqrt{\alpha [H^+]}}$$

Calculated Debye screening length

Volume fraction	pН	Ionization factor	[H ⁺] (mol/m ³)	Debye screening length	
Φ (x10 ⁻³)		((<i>l</i>) (nm)	
		α){Choi, 2005 #19}			
0.37	4.20	0.073	0.063	55	
0.72	4.10	0.067	0.080	49	
1.09	3.61	0.060	0.25	28	
1.48	3.43	0.051	0.37	23	

SI6: Dynamic light Scattering Results

Average hydrodynamic radius of PAA : R_h=137 nm

For PAA³,

$$\frac{R_g}{R_h} = 1.45$$

Radius of Gyration of PAA (R_g)

$$R_g = 1.45 * 137 \ nm$$

$$R_g = 198 nm$$

Overlap Concentration (*c*^{*}**)**

$$c^{*} = \frac{M_{w}}{\frac{4}{3}\pi N_{av}R_{g}^{3}}$$

$$c^{*} = \frac{1000000 * 10^{-3} kgmol^{-1}}{\frac{4}{3}*\pi * 6.02 * 10^{23} mol^{-1} * (198.10^{-9})^{3} m^{3}}$$

$$c^{*} = 0.05 \frac{kg}{m^{3}}$$

Overlap volume fraction, $\phi^*=4.4 \times 10^{-5}$

SI7: Correlation length (ξ) calculation

Correlation length (ξ) ⁴

$$\frac{\xi}{R_g} = \left(\frac{c}{c^*}\right)^{-\frac{1}{2}}$$
$$\xi = \frac{R_g * \sqrt{4.4 \times 10^{-5}}}{\sqrt{c}}$$

Calculated correlation length for each concentration

Volume fraction	^ξ (nm)
(v/v)	
0.00037	69
0.00072	49
0.00109	40
0.00148	34

The size-ratio d/ ξ for each particle size in different concentration

Volume		d /ξ			
fraction (v/v)	^ξ (nm)	d=5 nm	d=20 nm	d=40 nm	
0.00037	69	0.07	0.29	0.58	
0.00072	49	0.10	0.41	0.81	
0.00109	40	0.13	0.50	1.00	
0.00148	34	0.15	0.59	1.17	

SI8: Normalized diffusion coefficient vs. PAA volume fraction

SI9: The effective viscosity as a function of NP size at a constant volume fraction of PAA

Reference

- 1. Lin, T. H.; Phillies, G. D. J. Phys. Chem. **1982**, 86, (20), 4073-4077.
- 2. Choi, J.; Rubner, M. F. *Macromolecules* **2005**, 38, (1), 116-124.
- Reith, D.; Müller, B.; Müller-Plathe, F.; Wiegand, S. J. Chem. Phys. 2002, 116, (20), 9100 9106.
- 4. Dobrynin, A.; Rubinstein, M., *Theory of polyelectrolytes in solutions and at surfaces*. 2005;
 Vol. 30, p 1049-1118.