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I. The cut-off radius for the SDK potential

As was pointed out in the main text, in the original study by Soddemann et al.1 the

cut-off radius of the SDK potential, rc, was chosen to be 1.5σ in order to include only

the first neighboring shell of interactions, determined from the first minimum of the pair

correlation function. In this supplementary information, we first show that in the context of

the Brownian dynamics simulations carried out in this work, the choice of rc = 1.5σ leads

to the prediction of unphysical asymptotic scaling behaviour in the poor solvent limit. We

then discuss how an appropriate value of the cut-off radius can be estimated. For the sake of

completeness and clarity, we repeat some of the equations that have already been displayed

in the main text.

The potential proposed by Soddemann-Dünweg-Kremer (SDK)1 has the form,
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A comparison is drawn in Fig. S1 between the SDK potential and the conventional

Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) potentials, the expressions of

which are given in Eq. (2) and Eq. (3), respectively.
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In the above equations, σ is the non-dimensional distance at which the LJ potential

becomes zero, and its value is taken to be 1 in the present study. The quantities ε and

εLJ are the attractive well depths of the SDK and LJ potentials, respectively. As shown in

Fig. S1, unlike the LJ potential, which has a long attractive tail, the short ranged attractive

tail of the SDK potential smoothly approaches zero at a finite distance rc. The choice ε = 0

in the SDK potential is equivalent to εLJ = 1.0 in the purely repulsive WCA potential.

2



FIG. S1. (Color online) Comparison between the SDK potential (USDK) and the conventional

LJ (ULJ) and WCA (UWCA) potentials as a function of the radial distance, r, for well depths

ε = εLJ = 2.0, σ = 1, and rc = 1.5 (see text for corresponding values of α and β).

The constants α and β (as discussed in the main text) are determined by applying the

two boundary conditions, namely, USDK = 0 at r = rc, and USDK = −ε at r = 21/6σ. Based

on these two boundary conditions, α and β are calculated by solving the following set of

equations,

21/3α + β = π (4)(rc
σ

)2
α + β = 2π (5)

In Appendix A of the main text it was shown how the value of εbb at the θ-point can

be estimated by plotting the ratio R2
g/(Nb − 1) versus εbb for different chain lengths, Nb,

and finding the point of intersection at which curves for different values of Nb intersect.2,3

With the cut-off radius set to rc = 1.5σ, the θ-point for a homopolymer chain with beads

connected by FENE springs having a maximum stretchable length of Q0
2 = 50.0, is found

to be εbb = 0.72 as shown in Fig. S2. This is in contrast to the value of εbb = 0.45 obtained

for rc = 1.82σ, as was demonstrated in Appendix A. The reasons for the unsuitability of
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FIG. S2. (Color online) The ratio R2
g/(Nb−1) as a function of the well depth of the SDK potential,

εbb, used to estimate the θ-point for the cutoff radius rc = 1.5σ. The symbols represent simulation

data and the dotted lines are drawn to guide the eye. The θ-point is estimated as the intersection

of all the curves and leads to εbb = 0.72.

using rc = 1.5σ are discussed below.

With increasing values of εbb beyond εbb = 0.72, the chain begins to collapse due to

decreasing solvent quality. In the limit of a poor solvent, linear polymer chains obey the

scaling law Rg ∼ (Nb − 1)1/3, indicating that the chains are space filling. Fig. S3 (a)

studies the chain length dependence of R2
g for various well depths εbb. For εbb = 0 (the

athermal limit) and εbb = 0.72 (the θ-point), the expected power law exponents of 1.2 and 1.0,

respectively, are observed. For intermediate values in the crossover regime, 0 < εbb < 0.72,

one expects, strictly speaking, a curve beginning with slope 1 at small values of Nb, and

gradually increasing to 1.2 for asymptotically long chains. However, for the fairly short

chains studied here, this curvature is very hard to observe; instead the data can be well

described in terms of an effective exponent, whose variation with εbb is shown in Fig. S3 (b).

An analogous crossover from a slope of 1.0 to (2/3) is expected as the well depth is increased

beyond the θ value of 0.72, with the effective exponent remaining at (2/3) for sufficiently

large εbb. However, as can be seen from Figs. S3 (a) and (b), the “asymptotic” slope at
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FIG. S3. (Color online) (a) The mean-squared radius of gyration as a function of the number

of beads in a chain. The blue-coloured symbols are for different values of well-depth, εbb, in the

absence of hydrodynamic interactions. • εbb = 0, N εbb = 0.2, ∗ εbb = 0.4, I εbb = 0.6, J εbb = 0.72,

+ εbb = 0.8, � εbb = 0.92 and � εbb = 1. The same symbols are used with a red colour for

simulations with hydrodynamic interactions. The straight lines are of slope 2ν at different values

of εbb. (b) Effective exponent 2ν versus the well-depth, εbb, for cutoff radius rc = 1.5σ.

εbb = 1 seems to be only 0.35, which is obviously unphysical, if interpreted as an asymptotic

scaling law. We can only speculate here about the reasons for this behaviour — since we

were able to “cure” the problem without a detailed investigation, we did not attempt to

analyse it in depth. However, a few observations may be made.

Firstly, Fig. S3 (a) shows clearly that the data at εbb = 1 are hampered by equilibration

problems. This becomes obvious via the comparison of data accumulated with and without

hydrodynamic interactions, which, as static averages, must be identical if strict thermal

equilibrium and sufficient sampling is achieved. Secondly, it has already been pointed out in

Soddemann, Dünweg, and Kremer 1 that the SDK potential with rc = 1.5σ has a propensity

to induce crystallisation, i.e., highly ordered structures. It is then quite conceivable that the
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growth of a highly collapsed globule with chain length occurs essentially in a layer-by-layer

fashion, which would then give rise to a fairly abrupt increase of R2
g as soon as a new layer

begins to be populated. The small slope of 0.35 that we observe in Fig. S3 (a) may then

perhaps be part of a quasi-plateau that corresponds to oscillations that are added on top of

the leading N2/3 behaviour.

FIG. S4. (Color online) The second virial coefficient B2 of the SDK potential, compared with the

corresponding value for the LJ potential, as a function of the cutoff radius, rc, for well-depths

εbb = εLJ = 1.0, and σ = 1.

Prompted by our experience with using a simple Lennard-Jones potential in analogous

studies of collapsing polymer chains,4 which did not exhibit this problem, we attempted to

solve it by modifying the SDK potential such that it would mimic more closely the attributes

of the Lennard-Jones potential. In practice, we adjusted the range of the SDK potential rc

by requiring that, for εLJ = εbb = 1 and σ = 1, both potentials give rise to the same value of

the second virial coefficient given by the integral5

B2 =

∫ ∞

0

2πr2(1− exp[−U(r)/kBT ]) dr. (6)

Matching this value with the corresponding LJ value results in rc = 1.82σ (see Fig. S4), for

which α = 1.5306333121 and β = 1.213115524. In view of the remarks made earlier, it is
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well conceivable that such a smoother potential will exhibit less pronounced oscillations or

perhaps none at all.

(a) (b)

FIG. S5. (Color online) (a) The mean-squared radius gyration versus number of beads in a chain.

The blue-coloured symbols are for different values of well-depth, εbb, in the absence of hydrodynamic

interactions. • εbb = 0, N εbb = 0.2, ∗ εbb = 0.4, I εbb = 0.45, J εbb = 0.55, + εbb = 0.6, � εbb = 0.7

and � εbb = 0.8, ♦ εbb = 1, 4 εbb = 2 and � εbb = 3. The same symbols are used with a red colour

for simulations with hydrodynamic interactions. The straight lines are of slope 2ν at different

values of εbb. (b) Exponent 2ν versus the well-depth, εbb, at cutoff radius rc = 1.82σ.

As seen in Fig. S5 (a), the effective exponent shows a gradual decrease from 1.2 at εbb = 0

to 0.67 at εbb = 0.55, and it remains constant at 0.67 well beyond εbb = 0.55, as shown in

Fig. S5 (b). The values of the mean-squared radius of gyration, R2
g, are reproduced with

HI for εbb = 0, 0.45 and 1.0, for different chain lengths and found to be consistent with the

results without HI (as seen in Fig. S5 (a)). All the results reported in the current work with

the SDK potential are consequently for rc = 1.82σ.
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