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We report for the reader convenience the analytical details of the model proposed in the paper. To this
end we refer to the equations in the main paper using the same notation, whereas we denote with ESI-(.)
the equation (.) of this Electronic Supplementary Information. Moreover according with the main paper
notation we denote with the subscripts m, d, and ¢ to denote variables referred to the molecule, the device
and the total (molecule plus device) system, respectively.

1 Hamiltonian of the system and basic definitions

The system is composed of n mass points with mass m connected by bistable springs with modulus k,,
and a loading device with mass M represented as an n + 1 spring with modulus kz. The Hamiltonian
function can be written as the sum of kinetic and elastic energy
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where ¢, is the reference strain of the unfolded configuration, | = L/n is the reference length of each
element, aLey is the elongation of the device and p; are the momentum of the i-th oscillator. Here x; is
an internal variable that can assume values 0 or 1 if the i-th element is folded or unfolded, respectively.
We consider different boundary conditions acting on the device: assigned displacement d (hard device)
or assigned force F' (soft device). In the framework of equilibrium Statistical Mechanics, these two cases
are described by the Helmholtz and Gibbs ensembles, respectively. The ideal hard and soft device, with
assigned displacements and force, respectively, acting directly on the molecule are obtained as limit systems.
Finally we consider the mechanical limit when entropic effects can be neglected and the thermodynamic
limit when the number n of elements diverges.

The total displacement can be expressed as
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where €, is the average strain of the molecule
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The relation between ¢, and the total strain &; is the following:
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By using (ESI-4) we can express the device strain as

acg=(1+a)e —em.



The equilibrium condition requires a constant force F':
km(ei — xi€u) = kaea = F.
By averaging with respect to I we then get the relation between the chain and the device strain
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where ¥ = # is the fraction of unfolded domains. After introducing the non-dimensional parameter
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measuring the relative device vs total stiffness, by using (ESI-4) we get
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2 Helmholtz Ensemble

Consider first the case of hard device, when the total displacement d is fixed. In this case we have to
consider the partition function in the Helmholtz ensemble defined as
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where 5 = 1/kpT, kp being the Boltzmann constant, 7" the absolute temperature and x = {x1,...,Xn} €
{0,1}™ is the vector denoting the phase (folded of unfolded) configuration. For the sake of simplicity
here and in what follows we drop the domain of the vector spin variable x. We used the Dirac function
to enforce the displacement constraint (ESI-2). We can separate the contributions to Z,» of the kinetic
energy and of the potential energy, so that we can split up the integral over the momenta and over the
strains, respectively:
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We solve the Gaussian integral over the momenta to obtain
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We can also integrate out the free variable €4 to obtain
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By using (ESI-4) we get
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In order to solve the Gaussian integrals, we rearrange the exponent in the partition function as follows:
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where we have introduced
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and
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is a constant energy term. The Gaussian integration of quadratic functions can be solved explicitly (see
e.g. |3] giving

—gAcetbetC o _ (2m)" 1 a-bbiC
(& g = ez .
n detA

Thus, we obtain
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We observe that, due to the absence of non-local energy terms, all solutions with the same unfolded
fraction x are characterized by the same energy. As a result the partition function describing the chain
and the apparatus as a whole is
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Notice that the binomial coefficient gives the number of iso-energetic configurations for fixed value of p.
We then deduce that the Helmholtz free energy is given by
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and the expectation value of the force can be obtained as
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Observe that the force-strain relation can be written in the same form of Eq.(11) of the main paper

(F) = km(e:(1 + @) — eu(X)) (ESI-15)



after introducing the (temperature dependent) expectation value of the unfolded fraction
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In order to evaluate the expectation value of the molecule strain, it is convenient to start from the
expression (ESI-7). We have
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where A is given by (ESI-6). It is straightforward to show that

1 L Zy _
L1+ a)Zy Oe —Bkm V(Et(l +a) = (em)), (ESI-17)
and, thus,
1 - 1 1 07,
(em) = (1 @)ee =3 <_5L<1+a> Zw af) =0t +a)—aly).  (ESLIS)

with the same form of the mechanical limit in Eq.(12). Finally, we have
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again respecting the results in Eq.(14) of the mechanical limit, with the variation due to the expectation
value of y in (ESI-16).

3 Gibbs Ensemble

Consider now the case of assigned force (soft device). The partition function for the Gibbs canonical

ensemble is
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where the Hamiltonian is defined in (ESI-1). We obtain
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where A has the same value (ESI-6) obtained in the case of assigned displacement, we used Eq. (ESI-8),
I, and I; correspond to the integration with respect to the e; and €4, respectively. We easily obtain
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where we have defined the constant
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On the other hand, the integral I,,, can be rewritten as
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Also in this case, we may observe that, due to the absence of non local energy terms, the energy of the
solutions with the same unfolded fraction is invariant with respect to the permutation of the elements.
Thus, we obtain the analytic expression
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Finally, we find the partition function in the Gibbs ensemble:
Bln
T = Ky eZms © (1 + eflent )" , (ESI-22)
where

o n/2
Kty (25) e,

Based on this result we can deduce the constitutive force-strain relation in the case of assigned force.
By using the definition of average strain (ESI-3), we get
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This can be rewritten as
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Thus, we have a product of simple Gaussian integrals (the integral over &; requires an integration by parts).
The solution can be written as
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By simplifying (ESI-24) we get
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where in the last equality we followed the same procedure used in (ESI-21). Finally, using the expression
(ESI-22) of the partition function and the integrals I,,,, I we obtain
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that again has the same form of the molecular response Eq.(14) in the purely mechanical approximation,
but in this case we consider the expectation value of the unfolded fraction (Y) in the Gibbs ensemble
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By definition, the Gibbs free energy is

g= —;ang

and the expectation value of the total strain of the system, which is the variable conjugated to the force,

can be obtained as
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This leads to
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where we have used (ESI-27), that has the same form of Eq.(11).
From (ESI-26) and (ESI-29) we can obtain the relation between (e;) and (g,,)
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consistent with Eq.(11) of the mechanical limit.

4 From Helmholtz to Gibbs ensembles: Laplace Transform

As well known [2], the partition functions in the Gibbs and Helmholtz ensembles are connected by a
Laplace transform with the force F' and the total displacement d as conjugate variables. From (ESI-13)
we have
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which is exactly the result obtained in (ESI-22). The other quantities (¢;) and (e,,) in the Gibbs ensemble
can be obtained accordingly.



5 Thermodynamic limit

In this section we show how to evaluate the expression of the phase fraction expression (ESI-16) in
the thermodynamic limit by using the saddle point method [3|. According to previous discussion the
dependence of the response from temperature, device stiffness and discreteness parameter n is measured by
the expectation value of the unfolded fraction, being the other expectation values of mechanical variable
related by the same equations Eq.(11), Eq.(12), Eq.(14).

Since in the Gibbs ensemble, the formula (ESI-27) does not depend on n the thermodynamical limit
behavior coincides with the one of systems with finite discreteness. We then need to study only the limit
the Helmholtz ensemble () in (ESI-16). To this end, we start considering the function f defined as

fle) = (n) e~ 25 (Reuai(14))”, (ESI-32)
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Using the Stirling approximation, n! ~ (%)n V2mn for n > 1, (ESI-32) can be written as
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where we considered both n and p large. To deduce the themodynamic limit, let us introduce the variable
x = p/n. In the limit of large n we obtain
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where we defined the (entropy) function

S(z) =zlnz+ (1 —z)ln(l —x).
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Finally, for large n we can apply the saddle point approximation. We search for the minimum of the

Bmly
2

function

S(z) + (z ey —gt(l—i-a))z

which can be found solving the equation
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It is easy to see that there exists only one solution x. in the interval 0, 1[. Thus, we can solve the integral
with the saddle point method by considering the expansion around . up to the second order as it follows:
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By substituting the variable y = /n(z — x.) we get
Fler) m |t ()= 2 (e ey (1+0))?) / VX (S R g,
27TXC(1 - XC) -1 Xxe

In the limit n — oo, we obtain

o (S 0xe)+ 2 (xeeu—ee (14a))?)

\/1 + Bkmlveuxe(1 — Xc)

fler) ~

Similarly, we can show that
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6 Ideal Cases

In this section we consider the ideal cases, tipically considered in the literature, when the device effect is
neglected and the displacement (ideal hard device) or the force (ideal soft device) are directly applied to

the unfolding molecule. In this case €, = ¢; and the Hamiltonian is
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6.1 Ideal Helmholtz ensemble
Using (ESI-35), the partition function in the Helmholtz ensemble for the ideal case is
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The integrals over the momenta result in the constant
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The constraint on the total displacement is imposed by the Dirac delta as it follows:
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The Gaussian integration can be solved as before in the general case with the presence of the device [3].
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Finally, we obtain the partition function for the ideal case in the Helmholtz ensemble:
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Using a procedure analogous to the general case, we deduce the formula for the expectation value of the

unfolded fraction in the ideal case:
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6.2 Ideal Gibbs Ensemble

If we apply a fixed force at the end of the chain of n bistable elements without considering the measuring
device we obtain the case of ideal soft device. By using (ESI-35) we can write the partition function in the

Gibbs ensemble as
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As in the Helmholtz ensemble the integral over the momenta gives the constant
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The integrals over the strains can be rewritten as
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The solution can be obtained exactly as in Sect. 3. We have
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From (ESI-42) we can obtain, as in the previous cases, the expectation value of the strain of the
molecule and the expectation value of the unfolded fraction in the ideal case
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7 Numerical test of the energy approximation

In this section we numerically verify the approximation used in the paper, i.e. the extension of the
energy (parabolic) function beyond the spinodal point. We focus on the case of the Gibbs ensemble
whereas the results for the Helmholtz ensemble can be found in [1]. In Fig. 1(a) we compare the force
strain curves obtained via Eq.(34)-(35) of the main paper and via the integration of the partition function
without approximation depending on the temperature. In particular, we have considered two different
temperatures, "= 300K and 7" = 3000K. In both cases the curves obtained analytically (continuous line)
and numerically (dashed line) are perfectly coincident. We deduce that the approximation used is very
robust. As a second check, we test the approximation for different values of the spring constant of the
measurement apparatus, i.e. we choose different values of « keeping k,, fixed. The results are shown in
Fig. 1(b). Also in this case, by superposing the numerical and analytical results we observe that they are
perfectly superimposed.



F(pN) F(pN) ~v=0.2
| — /
v=20.6
4 / 4
3000k ] N/ /
/ /
2 s 2
/
p> J L
- — ‘ 5t> e = <5t>
_—T2" 04 0.6 0.8 1.0 o 02— 04 0.6 0.8 1.0
[ e
e (a) / (b)
4] 4]

Figure 1: Comparison of the force-strain curves obtained using the analytical formulas (34)-(35) and the numerical
integration of the partition function without the approximation beyond the spinodal point described in the text. (a)
We have considered two different temperatures i.e. T'= 300K, T'= 3000 K with v = 0.6. (b) We have considered
two different spring constant of the measuring apparatus keeping k,, fixed i.e. v =0.6, v =0.2 with T'=300K. In
both cases we have fixed N =1 with [ = 20nm, e, = 1, k,,, = 90pN, a = 0.1.
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