Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

## **Supporting Information**

Strong adhesion of poly(vinyl alcohol)-glycerol hydrogels onto metal substrates for marine antifouling application

Heng-Wei Zhu<sup>a</sup>, Jia-Nan Zhang<sup>a</sup>, Pei Su<sup>b</sup>, Tianqi Liu<sup>a</sup>, Changcheng He<sup>a\*</sup>, Danqing Feng<sup>b\*</sup>, and Huiliang Wang<sup>a</sup>

<sup>a</sup>Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. E-mail: herbert@bnu.edu.cn

bState-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, P. R. China. E-mail: dqfeng@xmu.edu.cn



Fig. S1. Photograph of PVA-glycerol hydrogels. (a) Curved coating; (b) Planar coating.



**Fig. S2** Quality change of PVA-glycerol hydrogel adhered to the stainless steel cup in the "water losing- absorbing" cycle. (a,c) The mass change of the PVA-glycerol hydrogel adhered by the ECA adhesive ( $V_{\text{ECA}}$ :  $V_{\text{paraffin}} = 1:1$ ) with drying time being immersed in deionized water (a) and simulated seawater (c); (b, d) Quality change of

PVA hydrogel after each "water losing- absorbing" cycle in deionized water (b) and simulated seawater (d).



**Fig. S3** Photographs of the "PVA-glycerol gel/stainless steel cup" composite structure with ECA adhesive ( $V_{\text{ECA}}$ :  $V_{\text{paraffin}}$ = 1:1) after several "water losing- absorbing" cycles in simulated seawater. Photos from left to right refer to samples after 1, 2, 3, 4 and 5 times water losing (a) and water absorbing treatment (b), respectively.