Supporting Information

Strong adhesion of poly(vinyl alcohol)-glycerol hydrogels onto metal substrates for marine antifouling application

Heng-Wei Zhua, Jia-Nan Zhanga, Pei Su ${ }^{\text {b }}$, Tianqi Liu ${ }^{\text {a }}$, Changcheng He ${ }^{\text {a* }}$, Danqing Feng ${ }^{b^{*}}$, and Huiliang Wanga
${ }^{\text {a Beijing Key Laboratory of Energy Conversion and Storage Materials, }}$ College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. E-mail: herbert@bnu.edu.cn
${ }^{\text {b }}$ State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean \& Earth Sciences, Xiamen University, Xiamen, 361102, P. R. China. E-mail: dqfeng@xmu.edu.cn

Fig. S1. Photograph of PVA-glycerol hydrogels. (a) Curved coating; (b) Planar coating.

Fig. S2 Quality change of PVA-glycerol hydrogel adhered to the stainless steel cup in the "water losing- absorbing" cycle. (a,c) The mass change of the PVA-glycerol hydrogel adhered by the ECA adhesive ($V_{\mathrm{ECA}}: V_{\text {paraffin }}=1: 1$) with drying time being immersed in deionized water (a) and simulated seawater (c); (b, d) Quality change of

PVA hydrogel after each "water losing- absorbing" cycle in deionized water (b) and simulated seawater (d).

Fig. S3 Photographs of the "PVA-glycerol gel/stainless steel cup" composite structure with ECA adhesive ($V_{\mathrm{ECA}}: V_{\text {paraffin }}=1: 1$) after several "water losing- absorbing" cycles in simulated seawater. Photos from left to right refer to samples after 1, 2, 3, 4 and 5 times water losing (a) and water absorbing treatment (b), respectively.

