Supplementary Information

Synergy between Plant Phenols and Carotenoids in Stabilizing Lipid-

bilayer Membranes of Giant Unilamellar Vesicles Against Oxidative

Destruction

Yi-Ming Zhou,^a Xiao-Chen Liu,^a Yu-Qian Li,^a Peng Wang,^a Rui-Min Han,^a Jian-Ping Zhang,^{*,a} Leif H. Skibsted^{*,b}
^aDepartment of Chemistry, Renmin University of China, Beijing, 100872, China
^bDepartment of Food Science, University of Copenhagen, Rolighedsvej 30,
DK-1958 Frederiksberg C, Denmark

*E-mail: jpzhang@ruc.edu.cn (J.-P. Zhang); E-mail: ls@food.ku.dk (L. H. Skibsted)

S1. Photosensitized morphological changes of GUVs

Figure S1. Optical microscopic images of GUVs recorded during the process of photosensitized oxidation. The GUVs incorporated with Chl-*a* (8.82×10⁻⁷ M) and β -CAR (4.41×10⁻⁷ M) were added with the indicated plant phenols (4.41×10⁻⁷ M; For molecular structures, see Scheme 1 of the main text).

S2. Comparison of the $\Delta \Psi$ -dependence of *LP*, $k_{\Delta E}$ and ΔE_{end}

Figure S2. Plots of the parameters LP, $k_{\Delta E}$ and ΔE_{end} derived from GUV morphological changes against the potential difference between carotenoid radical cation and phenoxyl radical, $\Delta \Psi = \Psi(\beta \text{-CAR}^{\bullet+}) - \Psi(\varphi \text{-O}^{\bullet})$. The values of $\Psi(\varphi \text{-O}^{\bullet})$ and $\Psi(\beta \text{-CAR}^{\bullet+})$ are based on Ref. S1 and Ref. S2, respectively (cf. Table 1 of the main text).

S3. Quantification of relative contents of β -CAR in membranes by Raman spectroscopy

Figure S3. Raman spectra of β -CAR in SUV membranes doped with Chl-*a* (8.82 × 10⁻⁶ M) and β -CAR (4.41×10⁻⁶ M) at the presence of different plant phenols (4.41×10⁻⁶ M). Each panel compares the spectra recorded prior to blue-light illumination (405 nm, 30 mW) and 15 min after. The pair of key Raman lines at ~1520 cm⁻¹ and ~1154 cm⁻¹, respectively, are originated from the symmetric C=C stretching (ν_1 mode) and the symmetric C-C stretching coupled with C-H bending (ν_2 mode).^{S3}

S4. UV-visible absorption spectra of the SUVs preparations for laser flash photolysis

Figure S4. UV-visible absorption spectra of the SUV preparations for submicrosecond time-resolved absorption spectroscopic measurements. The SUVs were doped with Chl-*a* (7.0×10^{-6} M) and β -CAR (3.5×10^{-6} M) and incubated with Que or Van (3.5×10^{-6} M).

S5. Determination of the log₁₀ partition coefficients and the dissociation constants of the

polyphenols

TABLE S1. *n*-Octanol/water partition coefficients (log*P*) at pH 7.4 determined following the protocols as described in Ref. S4. Dissociation constants (pK_a),^{*a*} percentages of deprotonated forms (7-O⁻) and protonated neutral forms (PNF) of the plant phenols at pH 6.8.

Phenols	salicylic	vanillic	syringic	caffeic	rutin	quercetin	(+)-catechin
Properties	acid	acid	acid	acid	Tutin	querceun	(·) catternin
logP	-1.05	-0.64	-1.18	-0.57	-0.22	2.07	0.08
pK _{a1}	2.79	4.16	3.93	3.45	6.37	6.38	9.01
	(1-COOH)	(1-COOH)	(1-COOH)	(1-COOH)	(7-OH)	(7-OH)	(3'-OH)
pK _{a2}	13.23	10.14	9.55	9.28	7.96	7.85	9.62
	(2-OH)	(4-OH)	(4-OH)	(5-OH)	(5-OH)	(5-OH)	(5-OH)
pK _{a3}					8.56	8.63	10.8
					(4'-OH)	(4'-OH)	(4'-OH)
pK _{a4}					11.91	10.29	12.65
					(5'-OH)	(3-OH)	(3- OH)
7-O ⁻ (%)					69.2	57.6	
PNF (%)					25.9	25.8	99.4

^a Calculated with Marvin Calculator Plugins. Marvin 18.24.0 2018, ChemAxon (<u>http://www.chemaxon.com</u>).

REFERENCES

- S1. Simić, A.; Manojlović, D.; Šegan, D.; Todorović, M. Electro-chemical behavior and antioxidant and prooxidant activity of natural phenolics. *Molecules* 2007, **12**, 2327–2340.
- S2. Burke, M.; Edge, R.; Land, E. J.; Mcgarvey, D. J; Truscott, T. G. One-electron reduction potentials of dietary carotenoid radical cations in aqueous micellar environment. *FEBS Lett.* 2001, **500**, 132–136.
- S3. Koyama, Y.; Takatsuka, I.; Nakata, M.; Tasumi, M. Raman and infrared spectra of the all-*trans*, 7-*cis*, 9-*cis*, 13-*cis* and 15-*cis* isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central bent configurations. J. Raman Spectrosc. 1988, **19**, 37–49.
- S4. Liang, R.; Chen, C.-H.; Han, R.-M.; Zhang J.-P.; Skibsted L. H. Thermodynamic versus kinetic control of antioxidant synergism between β-carotene and (iso)flavonoids and their glycosides in liposomes, J. Agric. Food Chem. 2010, 58, 9221–9227.