Journal Name

Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using *in situ* X-ray scattering

Linda Hong,^{a,b} Muhsincan Sesen,^{c,f} Adrian Hawley,^d Adrian Neild,^c Patrick T. Spicer^e and Ben J. Boyd^{a,b*}

Supplementary data

Supplementary table 1. Composition of formulations to construct the phase diagram of the 'digested' PHYT20TB emulsion. The formulation code contains the % w/w of TB and the % w/w of the digestion products (DP) in the formulation, where DP consists of BA and GLY.

Formulation	Buffer (g)	PHYT (g)	TB (g)	3BA+GLY (g)
20TB-0DP	2.700	0.240	0.012	0.057
18TB-2DG	2.700	0.240	0.011	0.058
16TB-4DP	2.700	0.240	0.010	0.059
14TB-6DP	2.700	0.240	0.008	0.061
12TB-8DP	2.700	0.240	0.007	0.062
10TB-10DP	2.700	0.240	0.006	0.064
OTB-20DP	2.700	0.240	0.000	0.071

Supplementary table 2. Composition of formulations to construct the phase diagram of the 'digested' PHYT20TB emulsion. The formulation code contains the % w/w of TB and the % w/w of the digestion products (DP) in the formulation, where DP consists of CA and MC.

Formulation	Buffer (g)	PHYT (g)	TC (g)	2CA+MC (g)
15TC-0DP	2.700	0.255	0.045	0.000
12TC-3DP	2.700	0.255	0.036	0.009
9TC-6DP	2.700	0.255	0.027	0.018
6TC-9DP	2.700	0.255	0.018	0.027
3TC-12DP	2.700	0.255	0.009	0.036
0TC-15DP	2.700	0.255	0.000	0.045

^{a.} Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia

^{b.} ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia

^{c.} Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

^{d.} SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3150, Australia

^{e.} School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia

^{f.} Present address: Department of Bioengineering, South Kensington Campus, Imperial College London, SW7 2AZ, United Kingdom.

To determine the position of complete diffusion along the microchannel, the time of complete mixing, *t*, was first calculated using equation (1). This equation takes into account the lateral distance the solute, *x*, in this case is lipase, must travel across, and its diffusion coefficient, *D*. For these calculations, the distance that the enzyme needed to diffuse across was 100 μ m, being half the width of the X-ray beam which was centred on the lipid-enzyme interface. The diffusion coefficient was also adjusted for Taylor-Aris diffusion using equation (3).

The complete mixing time was then converted to a position using equation (2). An example of these equations used for the total flow rate of 1200 μ L/hr can be found in Supplementary table 3. The distances of complete diffusion with adjusted diffusion coefficients for the pancreatic lipase is shown in Supplementary table 4 and Supplementary table 5.

$$t = \frac{x^2}{2D} \tag{1}$$

 $Distance = Average \ velocity \times t \tag{2}$

$$\frac{K}{D} = 1 + \frac{1}{210} \left(\frac{Ud}{D}\right)^2$$
 (3)

Supplementary table 3. The variables used to calculate the position of complete diffusion of lipase from one stream to another during a digestion in the microfluidic device.

Width of channel	1.1	mm
Enhanced diffusion coefficient of pancreatic lipase (for TFR 1200 μL/min)	7.09 x 10 ⁻⁶	cm²/sec
x (travel distance, cm)	0.01	cm
Total flow rate	1200.0	μL/hr
Cross sectional area	0.95	mm²
Flow rate (enzyme solution)	10	μL/min
Flow rate (lipid formulation)	10	μL/min
Flow Rate Ratio (enzyme:lipid)	1	
Width of recipient stream	0.1	mm
Time of complete mixing	7.05	sec
Distance of complete mixing	2.47	mm

Supplementary table 4. Enhanced diffusion coefficients and the distance of complete mixing for each flow rate ratio for experiments conducted in the OTS-MF device.

TFR (μL/hr)	120	300	600	1200
К	0.1	1	3	11
Enhanced D (cm ² /s)	7.10E-08	4.43E-07	1.77E-06	7.09E-06
Time of complete mixing (sec)	704.40	112.76	28.19	7.05
Distance of complete mixing (mm)	24.71	9.89	4.94	2.47
Distance of complete mixing (% of full channel length)	24.71	9.89	4.94	2.47
TFR (μL/hr)	2400	3600	6000	12000
К	42	95	265	1059
Enhanced D (cm ² /s)	2.84E-05	6.38E-05	1.77E-04	7.09E-04
Time of complete mixing (sec)	1.76	0.78	0.28	0.07
Distance of complete mixing (mm)	1.24	0.82	0.49	0.25
Distance of complete mixing (% of full channel length)	1.24	0.82	0.49	0.25

Supplementary table 5. Enhanced diffusion coefficients and the distance of complete mixing for each flow rate ratio for experiments conducted in the S-MF device.

TFR (μL/hr)	10	40
К	1.55E-01	1.22E+00
Enhanced D (cm ² /s)	1.04E-07	1.67E-06
Time of complete mixing (sec)	119.98	7.50
Distance of complete mixing (mm)	28.05	7.02
Distance of complete mixing (% of channel length)	8.02	2.00