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FIG. 1. Schematic depiction of the 9 element density sub-grid used to compute the local density

of particle i (grey). All surrounding particles with coordinates (black dots) that lie within the

sub-grid contribute to the local density, and hence to the ε value of particle i. The Lennard-Jones

potential between the central particle i and neighbours j that lie beyond the cut-off region (blue

circle), determined by the cut-off radius rc = 1.2σ, is set to zero.

I. PARTICLE-BASED SIMULATIONS

A. Computing the density and the corresponding ε

Our Brownian Dynamics simulations were performed using in-house software written in

Java. At each time-step of the density-dependent simulations, the interaction between any

pair of particles, i and j, depends on the local densities, ρi and ρj, experienced by each

particle. Local densities were computed on a 115σ × 115σ grid comprised of 92 × 92 grid

elements each with a length of 1.25σ. The local density, ρi, experienced by particle i, was

computed using a 3× 3 element sub-grid centered around the element containing particle i

(Fig. 1). The value of ρi was computed as the ratio of the sub-grid area, 9× (1.25σ×1.25σ),

to number of particles in the sub-grid, and the value of εi assigned to that particle was

obtained via εi = ρiε
′. The geometric average, εi,j =

√
εiεj, was then used to compute the
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Lennard-Jones potential (Eq. (15) of the main manuscript) for particle pairs separated by

a distance less than the cut-off, rc = 1.2σ (blue circle). The computation of neighbour

interactions was made more efficient via implementation of a linked neighbour list [1].

B. Non-dimensionalisation of the over-damped Langevin equation

The position, xi of an individual particle, i, at time t was obtained in our simulations by

solving the over-damped Langevin equation

dxi
dt

= βDFi +
√

2Dηi(t), (1)

where D is the diffusion coefficient, β = 1/kBT , Fi = −∇
∑N

j 6=i Uij is the force on particle

i resulting from interactions with its N − 1 neighbours, and ηi(t) is a unit variance white

noise variable with 〈ηi(t)〉 = 0 and 〈ηi;α(t)ηi;β(t′)〉 = δα,βδ(t− t′) with α, β = x, y.

To integrate this equation numerically in our particle-based simulations, we used the

discretised form of Eq. 1 for each component of the position vector xi

dxi = βDFi∆t+
√

2Dη̃
√

∆t, (2)

where the dimensionless noise, η̃(t), is a Gaussian random variable with mean 0 and variance

of 1 [2]. For computational efficiency, the values of the random variable were generated from

a uniform distribution with range [−
√

3,
√

3] in order to ensure a mean value of 0 and a

variance of 1 [2].

We non-dimensionalised this equation by rescaling the variables x, t, and F via the

following transformations

x→ αx̃ (3a)

t→ τ t̃ (3b)

F → φF̃ . (3c)

Using σ, σ2

D
, and kBT as the basic units of length, time, and energy respectively, gives

α = σ (4a)

τ =
σ2

D
(4b)

φ =
kBT

σ
(4c)
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so that the rescaled variables are given by

x→ σx̃ (5a)

t→ σ2

D
t̃ (5b)

F → kBT

σ
F̃ . (5c)

Substitution of Eqs. (5) into Eq. (2), gives

dx̃i =
1

σ

D

kBT

kBT

σ

σ2

D
F̃i∆t̃+

1

σ

√
σ2

√
D

√
2Dη̃i(t)

√
∆t̃, (6)

which is equivalent to the non-dimensionalised form

dx̃i = F̃i∆t̃+
√

2η̃i(t)
√

∆t̃. (7)

The use of kBT as the basic unit of energy rescales the interaction strength, ε, in the

Lennard-Jones potential to the dimensionless quantity ε̃ via the transformation ε → kBT ε̃.

The non-dimensionalised form of the Lennard Jones potential then has the form

Ũ(r̃) = 4ε̃
[
(1/r̃)12 − (1/r̃)6 − Ũc

]
, (8)

where, r̃ is the distance between the two particles, and Ũc is the cut and shifted term that

ensures that the interaction energy at the cut-off distance, rc = 1.2, is zero. Considering ε

as a function of the density, ε = ρ× ε′, in our 2-dimensional density-dependent simulations,

gives rise to the following rescaling transformations

ε′ → kBTσ
2ε̃ (9a)

ε→ kBTσ
2

σ2
ε̃. (9b)

C. Equilibration

The Brownian dynamics simulation method outlined above is stochastic due to the noise

variable, η, and therefore many simulation runs should be performed in order to generate

acceptable statistical data. We therefore performed 10 simulations for every parameter set θ,

ε′ (ε), in our density-dependent (-independent simulations). Stochasticity in each individual

simulation was implemented by the use of a random-number generator, each of which was

initialised with a different seed.
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θ = 0.21, t = 1000 τ θ = 0.29, t = 1000 τ θ = 0.38, t = 1000 τ 

θ = 0.21, t = 0 τ θ = 0.29, t = 0 τ θ = 0.38, t = 0 τ 

(a) (b) (c)

(d) (e) (f)

FIG. 2. Relaxation of the systems from initial lattice configurations. (a)-(c) Initial lattice config-

urations for systems with area fraction θ = 0.21, θ = 0.29, and θ = 0.38. (d)-(f) Corresponding

equilibrated configurations after “equilibration” runs of 1000τ with WCA potential. This pro-

cedure was repeated 10 times for each area fraction. The resulting configurations were used to

initialise 10 replicate simulations for each system under study.
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FIG. 3. Static structure factors, S(q), corresponding to the relaxation of the systems from their

initial lattice configurations (Fig. 2). (a) θ = 0.21, (b) θ = 0.29, (c) θ = 0.38. An equilibration

period of 1000τ is clearly sufficient for the initial structure imposed by the lattice configuration to

relax. The different colours correspond to various time points of the simulation.

To initiate our simulations of systems of particles interacting with density-dependent and
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-independent potentials, we first generated 10 equilibrated starting configurations for each

of three area fractions. To do this, N particles corresponding to area fractions θ = 0.21(N =

3600), θ = 0.29(N = 4900), and θ = 0.38(N = 6400), were arranged on a 2D square lattice

within a box of dimensions 115σ × 115σ (see Figs. 2(a)-(c)). These systems were then

relaxed for 1000τ using the Brownian Dynamics simulation method (time-step of 1×10−4τ)

outlined in Section I B above and in the main manuscript. During these equilibration runs,

particles interacted via the soft repulsive Weeks-Chandler-Andersen potential [3]

U(r) =

4ε [(σ/r)12 − (σ/r)6] + ε if r < 2
1
6σ

0 if r ≥ 2
1
6σ,

(10)

which when using ε
kBT

= ε̃ = 1 gives the non-dimensionalised form

Ũ(r̃) =

4 [(1/r̃)12 − (1/r̃)6] + 1 if r̃ < 2
1
6

0 if r̃ ≥ 2
1
6 .

(11)

Figures 2(d)-(f) show representative final configurations resulting from this relaxation

procedure. It is clear from Figs. 3, which show the static structure factor, S(q) (see Sec. I D),

at three different time points during the simulations depicted in Figs. 2(a)-(c), that 1000τ

is sufficient for the systems to relax from their initial lattice configurations. This relaxation

procedure was performed 10 times for each area fraction, and the “equilibrated” final config-

urations were then used as starting configurations for simulations with the density-dependent

and -independent Lennard-Jones interactions turned on. For example, to generate data for

the density-dependent system θ = 0.29, ε′ = 40, the 10 “equilibrated” configurations gener-

ated from the relaxation of the θ = 0.29 system, were used to initialised 10 “production-run”

simulations, each with a different set of random numbers, for this parameter set.

D. Structure factor computation

Static structure factors were computed via

S(q) = N−1〈ρ(q)ρ(−q)〉, (12)

where q is the magnitude of the wave vector q = (2π/L)(kx, ky), with L = 115σ being the

box length, and kx and ky integers. The reciprocal space density, ρ(q), is given by the spatial
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Fourier transform of the number density via

ρ(q) =
N∑
i=1

exp(iq · ri). (13)

The structure factors at time t = 0 in Figs 3 were computed for the initial lattice con-

figuration as described in Section I C above. The structure factors at each time t > 0 were

computed as the average of configurations sampled every 10τ during time windows of length

50τ in any one simulation. For example, the structure factors at t = 50τ were computed as

the average over the 5 simulation configurations sampled every 10τ between t = 10τ → 50τ .

The structure factors at t = 1000τ were computed as the average over the 5 simulation

configurations sampled every 10τ between t = 960τ → 1000τ .

For density-dependent simulations (see Sec. I F), in which a smaller time-step of 2.5 ×

10−5τ is used, the structure factors (Figs 6) at each time t > 0 were computed as the

average of configurations sampled every 2.5τ during time windows of length 60τ in any one

simulation, e.g., the S(q) at t = 62.5τ was computed as the average over the 25 simulation

configurations sampled every 2.5τ between t = 2.5τ → 62.5τ ; at t = 625τ , S(q) was

computed as the average over the 25 simulation configurations sampled every 2.5τ between

t = 565τ → 625τ ; and so on.

E. Simulation run lengths

To explore the early phase separation behaviour in our density-dependent and density-

independent simulations, we chose as our run-time, trun, the approximate time required

for the fraction of particles in clusters, Γ, to reach a steady state. Figure 4 shows the

time evolution of Γ during density-dependent simulations for the systems in the “gel-like”

(ε′ = 70), and phase separating regimes (ε′ = 45, ε′ = 40, and ε′ = 35) at θ = 0.21, θ = 0.29,

and θ = 38.

The steady state value of Γ is indicative of the extent of the phase separation. For

example, small Γ→ “gas rich” (data not shown); high Γ→ “gel-like”; and intermediate Γ is

indicative of a phase separated state consisting of aggregates immersed in a sea of particles.

In this intermediate steady state regime, where Γ→ 0.65 (the main focus of this study), one

can see that Γ has reached a steady state for θ = 0.21 by ∼ 2500τ , whereas in the systems of

higher area fractions, θ = 0.29 and θ = 0.38, equilibration of Γ is attained at the earlier time
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FIG. 4. The fraction of particles in aggregates, Γ, as a function of time. Γ approaches 1 for systems

in the “gel-like” regime, ε′ = 70. In the phase separating regimes, ε′ = 45, 40, 35, for systems of

area fraction θ = 0.21, 0.29, 0.38 respectively, Γ has a steady-state value of ∼ 0.65. The time for the

systems to reach this steady-state is ∼ 2500τ for the θ = 0.21 system (dashed orange curve), and

∼ 1250τ for the θ = 0.29 and θ = 0.38 systems (dashed grey curve). These times were considered

long enough for simulation runs investigating the early aggregation behaviour in these systems.

The dashed green curve shows the ratio of the maximum aggregate size to the number of particles,

Nmax
a /N , for the θ = 0.29, ε′ = 40 system. This value equals Γ when coarsening and coalescence

processes result in one phase separated cluster in the system after 1.2× 104τ (inset).

of ∼ 1250τ . Beyond this time, Γ has reached a steady state and coarsening and coalescence

changes the distribution of aggregate sizes until there is a single phase separated domain by

12000τ (inset).

Although, these growth processes lead to an increase in the maximum aggregate size

Nmax
a (the green dashed curve shows Nmax

a

N
for θ = 0.29, ε′ = 40), the fraction of particles

in clusters remains relatively constant. The time evolution of Nmax
a

N
(green dashed curve)

provides greater insight into this redistribution process. At times greater than 12000τ , this

ratio becomes equal to Γ meaning that there is one large cluster in the system (inset). Jumps

in the green curve are indicative of coalescence events whereas a steady increase points to

coarsening.
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FIG. 5. Simulation snapshots of systems of Brownian particles interacting via density-dependent

potential. Snapshots are representative of simulation configurations at times trun = 2500τ (θ =

0.21) and trun = 1250τ (θ = 0.29 and θ = 0.38).

F. Phase separation behaviour and structure emerging from density-dependent

simulations

Figure 5 shows configurations at trun for the three area fractions θ = 0.21 (trun = 2500τ),

θ = 0.29 (trun = 1250τ), and θ = 0.38 (trun = 1250τ) for values of ε′ corresponding

to: the “gas-phase” regime (ε′ = 1); the “phase-separation” regime (ε′ = 45, 40, 35); and

the “gel-like” regime (ε′ = 70). At ε′ = 1, the three systems are in a “gas-like” phase

with ordering, characterised by the structure factor S(q), consistent with that of a simple

colloidal dispersion or hard sphere fluid (Figs. 6 (a)-(c)). At ε′ = 70, the aggregates are

more elongated and tend to “gel-like” states with increasing θ. Well-defined structure in

these condensed phases is reflected by the peaks in S(q) (Figs. 6 (g)-(i)).
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(f) θ = 0.38, ε’ = 35
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FIG. 6. Static structure factors, S(q), corresponding to various time points during the evolution

of the density-dependent simulation towards the states depicted in Fig. 5

.

At intermediate values of ε′ (Figs. 5 (d)-(f)), it is clear that the systems are undergoing

phase separation into condensed and non-condensed phases, with the emergence of the former

being determined by the presence of well-defined peaks in S(q) (Figs. 6 (d)-(f)). Strikingly,

the particles are distributed such that condensed phase aggregates are immersed in a dilute

“gas”.
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FIG. 7. Normalised probability distributions of the local densities sampled in the 10 final config-

urations at 2500τ (θ = 0.21) and 1250τ (θ = 0.29, 0.38). The dashed vertical line corresponding

to ρ = 0.924, gives rise to ε = 41.58, 36.96, 32.34 for θ = 0.21, 0.29, 0.38 with which to run density-

independent simulations.

G. Density independent simulations

In any given density-dependent simulation, a range of ε values is sampled by the interact-

ing particles. Therefore, to compare our results to those for systems of particles interacting

independently of the density, we carried out density-independent simulations with Lennard-

Jones interaction strength ε corresponding to the values of ε sampled (via ε = ρ(x)ε′) in the

final configurations of the phase separating regimes of our density-dependent simulations

(Figs. 5(d)-(f)).

Focusing here on the system with θ = 0.29 and ε′ = 40, the procedure was performed

as follows. From the 10 final configurations at trun = 1250τ (one of which is shown in Fig.

5 (e)), a normalised distribution, p(ρ), of the local density experienced by each particle

(Fig. 7) was constructed. For the 15 values of ρ sampled in these final configurations, a

value of ε was generated for each via ε = ρ(x)ε′ (see Table I). For each value of ε, 10

density-independent simulations were performed. This procedure was repeated for density-

independent simulations corresponding to the θ = 0.21, ε′ = 45, and the θ = 0.38, ε′ = 35

systems. As will be discussed in more detail below, the value of p(ρ) at each value of ρ was

also used as the weight for the construction of a weighted linear superposition of density-

independent aggregate size distributions (see Fig. 11(c) of main manuscript).
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Figure 7 shows p(ρ) from the density-dependent systems taken at time trun. The two

peaks in p(ρ) correspond to the phase-separated states shown in Figs. 5(d)-(f). Although

increasing θ has little effect on the location of the high density peak due to limitations in

packing, it does have the effect of increasing the density of the “non-condensed” phase.

Increasing θ also leads to a decrease in the bimodal nature of the distributions because more

particles are available to sample intermediate values of ρ.

θ = 0.21 θ = 0.29 θ = 0.38

ρ ε = ε′ × ρ w ε = ε′ × ρ w ε = ε′ × ρ w

0.071 3.2 0.065 2.84 0.020 2.49 0.003

0.142 6.40 0.123 5.68 0.071 4.97 0.019

0.213 9.59 0.102 8.52 0.107 7.46 0.056

0.284 12.78 0.056 11.36 0.102 9.94 0.096

0.356 16.02 0.024 14.24 0.064 12.46 0.104

0.427 19.22 0.015 17.08 0.036 14.95 0.082

0.498 22.41 0.016 19.92 0.024 17.43 0.055

0.569 25.61 0.020 22.76 0.021 19.92 0.034

0.640 28.8 0.026 25.60 0.027 22.40 0.031

0.711 32.00 0.033 28.44 0.034 24.89 0.037

0.782 35.19 0.046 31.28 0.052 27.37 0.051

0.853 38.39 0.134 34.12 0.131 29.86 0.126

0.924 41.58 0.221 36.96 0.197 32.34 0.159

0.996 44.82 0.118 39.84 0.109 34.86 0.146

1.067 48.02 0.002 42.68 0.002 37.34 0.001

TABLE I. Parameters derived from density-dependent simulations to be used for input (analysis)

to (of) density-independent simulations.

Figure 8 shows the aggregate size distributions resulting from density-independent sim-

ulations at trun = 1250τ (θ = 0.29, 0.38) and 2500τ (θ = 0.21). The solid lines represent

phase separated regimes in which condensed phase aggregates or gel-like networks are clearly

present. The distributions shown with dashed lines, the “non-aggregating regime”, fall into
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FIG. 8. Distribution of aggregate sizes from density-independent simulations at 2500τ for θ = 0.21

(a) and 1250τ for θ = 0.29 (b) and θ = 0.38 (c). Dashed curves correspond to “non-aggregating”

regimes discussed in the text. Each distribution was generated from the final configurations of 10

replicate simulations. The aggregate peak of the purple dashed curve at ∼ log(3.0) in (c) is a result

of aggregates present in 4 of the 10 simulations at ε = 22.4. Aggregation in this case resulted from

nucleation events thus only occurring in a few of the simulations.

three categories: 1) No permanent condensed phase, peaks located at log(A) < 1; 2) Tran-

sient aggregates, peaks located between 1 < log(A) <∼ 2.5: here the “seeds” of aggregates

dissolve upon formation and therefore fail to initialise; and 3) Condensed phase aggregates

present in some but not all of the simulations, e.g., at θ = 0.29, ε = 22.4 (dashed purple

curve in (c)), the peak at ∼ log(3.0) is a result of aggregates that have formed via nucleation

in 4/10 simulations. At all three area fractions, the size of the “aggregates” increases with

increasing ε. It is also evident that the lowest value of ε needed to induce phase separation

decreases with increased area fraction θ. In the “non-aggregating” regimes, the increased

sampling of transient aggregate sizes with increasing θ gives rise to flatter distributions. It

is evident that the density-independent simulations fail to produce the distributions that

emerge from the density-dependent simulations (solid black curves), i.e., two peaks cor-

responding to condensed and non-condensed phases with little sampling of intermediate

aggregate sizes.

Figure 9 shows a representative sample of final configurations resulting from density-

independent simulations in the: “non-aggregating” (first column), “aggregating” (middle

column), and “gel-like” (third column) regimes. Configurations in the aggregating regimes

(middle column) are representative of those distributions in Fig. 8 that most closely resemble
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FIG. 9. Simulation snapshots of systems of Brownian particles interacting via standard cut and

shifted Lennard-Jones potential. Snapshots are representative of simulation configurations at times

trun = 2500τ (θ = 0.21) and trun = 1250τ (θ = 0.29, 0.38) for “non-aggregating” (first column),

“phase separating” (middle column), and “gel-like” regimes.

the distributions generated from the corresponding density-dependent simulations (solid

black curves in Figs. 8). Comparing configurations from the density-dependent and density-

independent simulations, (Figs. 5(d)-(f) and Figs. 9(d)-(f)), we see that density-dependent

cohesion provides a means by which condensed phase aggregates can coexist with greater

numbers of “single particles”, i.e., a richer non-condensed phase, evident by the higher value

of the “single particle” peak of the black solid curves in Fig. 8.

To assess whether the bimodal distributions generated in our density-dependent simula-

tions θ = 0.21, ε′ = 45; θ = 0.29, ε′ = 40; and θ = 0.38, ε′ = 35 can be viewed as just a simple

combination all of the individual distributions in each of Figs. 8(a)-(c), we constructed
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FIG. 10. Aggregate size distributions generated from weighted linear superposition of density-

independent simulations (solid curves) corresponding to the phase separating regimes of the density-

dependent systems (θ = 0.21, ε′ = 45, θ = 0.29, ε′ = 40, θ = 0.38, ε′ = 35). The original density-

dependent aggregate size distributions are shown as dashed curves of the same colour.

weighted linear superpositions of these distributions, pls (Fig. 10), via

pls(Na) =
15∑
i=1

pεi(Na)× wεi , (14)

where pεi is the aggregate size distribution for a given value of ε, and wεi is the corresponding

weight of that value (Table I) given by the probabilities in Fig. 7, e.g., for the system with

θ = 0.29 and ε′ = 40, the linear superposition distribution at Na is given by

pls(Na) = pε1=3.2(Na)× 0.065 + ...+ pε15=42.68(Na)× 0.002. (15)

Comparing the resulting linear superpositions with the distributions from the correspond-

ing density-dependent simulations (Fig. 10, solid and dashed curves respectively), it is clear

that the aggregation behaviour emerging as a result of density-dependent cohesion is not a

simple combination of the various ε values explored. Compared to the density-dependent

simulation results, these superpositions show: a much broader range of aggregate sizes; a

much more uniform sampling of aggregate sizes; and a greater sampling of larger aggregates.
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FIG. 11. Thermodynamics of the density-independent and density-dependent Landau systems. (a)

Free energy density, f(ξ), for the density-independent system at a = −1.0. (b) Full phase diagram

of the density-independent system showing binodal (solid black) and spinodal (dashed black) lines

resulting from the solution of Eqs. (17) and Eq. (20). (c) Free energy density, f(ξ), for the

density-independent system at b = −0.5. (d) Full phase diagram of the density-dependent system

showing binodal (solid black) and spinodal (dashed black) lines resulting from the solution of Eqs.

(17) and Eq. (20). All variables and parameters are in simulation units. Dashed grey lines in

(a) and (c) highlight the common tangent construction between the condensed and non-condensed

phases, ξ2 and ξ1.

II. CONTINUUM MODEL

A. Landau Free Energies and Continuum Model

To ascertain the parameters with which to perform our continuum simulations, we con-

structed phase diagrams by generating the binodal and spinodal lines in the plane of the

critical parameters a for the density-dependent case (and b for density-dependence), and
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the global density ξ0. For both density-dependent and -independent systems, the binodal

and spinodal lines were generated via examination of the homogeneous part of the Landau

free-energy density.

The homogeneous part of the free energy density for the density-independent system is

f(ξ) =
a

2
ξ2 +

c

4
ξ4. (16)

where the order parameter, ξ, is a measure of the local density. The critical parameter,

a = ψ − υ can be positive or negative depending on the interplay between entropic (ψ) and

attractive (υ) parts of the interaction, and governs the transition from disordered to ordered

states. The parameter c is a positive constant (0.25) that ensures that the quartic term is

the lowest order term required to stabilise the free energy.

In our system, the overall density ξ0 is conserved according to
∫
ξdx = ξ0A, where A is

total area. Therefore, the system cannot simply adjust its value of ξ in order to minimise

the free energy. However, for values of ξ0 that correspond to regions of negative curvature

in the free energy, the system can lower its free energy by phase separating into coexisting

condensed and non-condensed phases with local densities of ξ2 and ξ1 respectively, the values

of which satisfy the common tangent construction (grey dashed line Fig. 11(a)).

Mathematically, the common tangent is constructed by equating both the chemical po-

tential, µ, and the pressure, P , of the two phases

µξ1 = µξ2 ,

Pξ1 = Pξ2 , (17)

where

µ(ξ) =
df(ξ)

dξ
, (18)

and

−P = f(ξ)− µ(ξ)ξ. (19)

The solutions of Eqs. (17) for all ξ give rise to a locus of points that form the binodal

line (black solid line in Fig. 11(b)). The spinodal line (dashed black line in Fig. 11(b)) was

constructed by finding the locus of inflection points of the free energy density by solving

d2f(ξ)

dξ2
= 0. (20)
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We follow a similar protocol for constructing the phase diagram for the density-dependent

system. The homogeneous part of the Landau free energy density for this system is given

by (see main manuscript)

f =
ψ

2
ξ2 +

b

3
ξ3 +

c

4
ξ4, (21)

where ψ = 0.05, and b ≡ 3
2
υ′ is the critical parameter that governs the phase transition.

The presence of the cubic term makes the free energy potential (Fig. 11(c)) asymmetric

when compared to the density-independent case (Fig. 11(a)). The phase diagram for the

density-dependent system in Fig. 11(d) was generated by solving Eqs. (17) (via the common

tangent construction, grey dashed line Fig. 11(c)) for the binodal line, and solving Eq. 20

for the spinodal line.

In our density-dependent and density-independent continuum models, the common tan-

gent constructions yields non-condensed phases, ξ1, that can become negative when the

parameters a and b decrease. To be physically realistic, however, ξ, being a measure of the

local density, must satisfy the condition that ξ ≥ 0, and so our continuum model phase

diagrams and free energy profiles are truncated at ξ = 0 (see main manuscript). In the

numerical simulations, this condition is satisfied by setting the chemical potential, µ, equal

to 10ξ whenever ξ becomes less than zero. This effectively shifts the free energy minimum

for the non condensed phase to ξ1 = 0.0.

In our simulations, the dynamics of ξ were modelled using the Cahn-Hilliard equation [4]

∂ξ(x, t)

∂t
= M∇2

(
δ

δξ(x)

∫
A

f(ξ(x))dx

)
+∇ · Jr, (22)

where M is the mobility, the term in brackets is the chemical potential, and Jr is a random

flux which is spatially and temporally uncorrelated, with mean 〈Jr(x, t)〉 = 0, and variance

〈Jr;α(x, t) · Jr;β(x, t′)〉 = Λξδα,βδ(x − x′)δ(t − t′), with α, β = x, y. For simplicity, both

M = 0.01 and the random noise strength Λ = 0.1 are kept constant.

Equation 22 was solved on a 256× 256 grid using standard finite difference simulations,

with periodic boundary conditions. These simulations were performed using in-house soft-

ware written in C++. Due to the random flux term in Equation 22, these simulations are

stochastic, and therefore, when necessary (see figure captions), many simulation runs were

performed in order to generate acceptable statistical data. Stochasticity in each individual

simulation was implemented by the use of a random-number generator, each of which was

initialised with a different seed.
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To map our continuum simulation units to real units we arbitrarily assign length-scales

and time-scales to our simulation units such that we can compute an effective diffusion

coefficient, Deff , with which to compare to the passive (non-motile) diffusion coefficient,

Dp = 0.2µm2s−1, of the bacterium E. coli [5]. This species of bacteria has a length of

∼ 2µm and divides approximately every 20 minutes depending on the growth conditions [6].

We used a grid spacing, l, of 0.25 simulation length units (SLU), which we can assigned to

be equal to 0.5µm, thus giving a characteristic length scale, lc, of 2µm. Much of our analysis

was performed after 5× 106 simulation steps using a time-step, ∆t, of 0.05 simulation time

units (STU) to give run-times, trun, of 2.5 × 105 STU. We assigned this time to be equal

to 20 minutes (1.2 × 103s) in order to work within experimental time-scales, in which the

number of cells is conserved (no growth and division). This gives rise to a characteristic

time-scale, tc, of 1.2×103
2.5×105 = 4.8 × 10−3 seconds. We can use these characteristic time- and

length- scales to compute the effective diffusion coefficient via Deff = l2c
tc
Ds, where Ds = Ma

(simulation units of energy times inverse time). Using M = 0.01 and a = ψ = 0.05 (for

the density-dependent Landau free energy density), the value of Deff for our continuum

simulations is 0.42µm2s−1 which is comparable to that of E. Coli.

B. Aggregate growth in the continuum Model

To compute aggregate sizes and aggregate size distributions in the continuum model

for the density-independent (a = −1.0) and density-dependent (b = −.05) systems, the

spatial continuum of densities was converted to a binary representation by considering only

those pixels that have a density value of ξ > 0.4. The size of the aggregates, A, was

then computed by analysing the connectivity between these selected pixels (or points with

(x, y) coordinates), via the same linked-list method [7] used for analysing the particle-based

simulations.

Figure 12(a) shows the amplification factor (see main manuscript) for the density-

dependent (red curve) and density-independent (blue curve) homogeneous Landau free

energy densities at ξ = 0.3. The maximum of this function, which sets length-scale of

the structures formed during spinodal decomposition, occurs at larger value of q (∼ 1.6)

in the density-independent system than in the density-dependent system (q ∼ 0.7). Due

to the reciprocal space dependence (q) of the amplification factor, this suggests that the
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FIG. 12. Aggregate growth. (a) Amplification factor, R(q), for the density-dependent (red curve)

and density-independent (blue curve) homogeneous Landau models. (b) Growth of the maximum

aggregate size (Amax) as a function of time in the numerical simulations. The growth curves

generated were averaged over several repeated simulations, 4 in the density-independent system,

and 5 in the density-dependent system. All units are in simulation units (SU).

structures formed in the very early stages of phase separation should be narrower in the

density-independent system compared to density-dependent system; this is evident from

Fig. 9 of the main manuscript. Figure 12(b) shows how the growth of the maximum clus-

ter size in both the density-dependent (red curve) and density-independent systems (blue
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curve) scale with time. In classic models of phase separation in diffusive systems without

hydrodynamic interactions, one would expect the typical domain length, computed from

the structure factor, to scale as t1/3, and thus area or number of particles N to scale as t2/3.

Although, here, we have assessed cluster growth, with respect to the maximum cluster size

in the system Amax, the scaling in Fig.12(b) is commensurate with such models.

C. Density and aggregate size distributions for switched simulations

The time evolution of the density distributions corresponding to the simulation snap-

shots in Fig. 9 of main manuscript are shown in Fig. 13. The similarity in the distributions

between (c) and (l), and, (f) and (i), strengthens the notion, pointed out in the main

manuscript, that trajectory history has little influence on the long term dynamics of phase

separation in the density-dependent system, and that it is the governing thermodynamics

that determine the behaviour. This if further supported by the fact the initial state has

little effect on the aggregate size distributions (Fig. 14).

D. Restoration of fluctuation dissipation theorem

In Eq. (12) of the main manuscript, it was noted that the choice of the prefactor, Λξ(x)

in the spatially and temporally uncorrelated random flux

〈Jr(x, t)〉 = 0

〈Jr;α(x, t) · Jr;β(x, t′)〉 = Λξδα,βδ(x− x′)δ(t− t′) (23)

violated the fluctuation-dissipation theorem (FDT) linking noise strength and mobility via

〈Jr;α(x, t) · Jr;β(x, t′)〉 = 2BTmδα,βδ(x− x′)δ(t− t′). (24)

This violation is acceptable in our study given that the dynamics of polymer secretion

outlined from Eqs. (1) to (5), will typically put the system out of equilibrium. That

said, however, we also did a quick qualitative comparison between the density-dependent

and independent systems (b = −0.5, a = −1.0) at an overall system density ξo with FDT

restored (Eq. 23). We found that the condensed phase regions formed more rapidly in

the density-independent system from elongated structures typically associated with those
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formed in the early stages of spinodal decomposition (Figs. 15(a) to (c)). These structures

rapidly contract to small aggregates that then coarsen and coalesce with time. In the density-

dependent system however, the formation of these elongated structures is not evident, rather

phase separation proceeds via the formation of larger more rounded aggregates (Figs. 15(d)

to (f)).This behaviour is qualitatively similar to that outlined in the main manuscript in

which the FDT was violated.
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FIG. 13. Time evolution of the probability distribution, P (ξ), corresponding to Fig. 9 of the

main manuscript for the “non-switched” (1st and 3rd row) vs “switched simulations” (2nd and

4th row). 1st row (top)- Density-independent simulation initialised with a configuration from a

density-independent simulation at time t = tps = 550 SU. 2nd row- Density-dependent simulation

initialised with a configuration from a density-independent simulation at time t = tps = 550 SU.

3rd row- Density-dependent simulation initialised with a configuration from a density-dependent

simulation at time t = tps = 3500 SU. 4th row (bottom)- Density-independent simulation initialised

with a configuration from a density-dependent simulation at time t = tps = 3500 SU. Columns (a,

d, g, j), (b, e, h, k), and (c, f, i, l) correspond to times t = 0 SU, t = 1500 SU, and t = 50000 SU

respectively.
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FIG. 14. Distribution of aggregate sizes corresponding to the final configurations (t = 50000) of

Fig. 10(c), (f), (i), (l) in the main manuscript for the switched and non-switched simulations. Solid

blue curve corresponds to (c), solid red curve corresponds to (f), dashed blue corresponds to (l),

and dashed red corresponds to (i).
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FIG. 15. Simulation snap-shots showing the time evolution of the density-independent (a-c) and

-dependent (d-e) systems with fluctuation-dissipation restored. (a) Density-independent, t = 500

SU. (b) Density-independent, t = 1500 SU. (c) Density-independent, t = 3500 SU. (d) Density-

dependent, t = 500 SU. (e) Density-dependent, t = 1500 SU. (f) Density-dependent, t = 3500

SU.
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