
Supporting Information

Poly(sodium acrylate) hydrogels: Syn-
thesis of various network architectures,
local molecular dynamics, salt parti-
tioning, desalination and simulation
Lukas Arens1, Dennis Barther1, Jonas Landsgesell2, Christian Holm2 and
Manfred Wilhelm∗1

1) Karlsruhe Institute of Technology (KIT), Institute for Technical Chem-
istry and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe,
Germany
2) University of Stuttgart, Institute for Computational Physics (ICP), All-
mandring 3, 70049 Stuttgart, Germany

∗ Corresponding author: E-Mail: manfred.wilhelm@kit.edu

1 Mapping of initial salt concentrations be-
tween Experiments and the Simulations

In the experiments we use a salt solution of given (initial) salt concentration
c0 in a chamber of volume V . Dry polymeric gel is added until the gel volume
Vgel and the volume of the supernatant salt solution Vsupernatant are half the
volume of the chamber Vgel = Vsupernatant = V/2. The number of salt ion pairs
in the volume is given by Ns = c0V which needs to be conserved in the whole
process. Therefore, the number of salt ion pairs in the supernatant phase
Ns,supernatant and the number of salt ion pairs in the gel phase Ns,gel sum up
to the total number of ion pairs Ns = Ns,gel + Ns,supernatant. The numbers
in the respective gel or supernatant phase can again be calculated from the
respective salt concentrations (cin, cout) and volumes of these phases: Ns,gel =
cinVgel = cinV/2 and Ns,supernatant = coutVsupernatant = coutV/2. Plugging these
particle numbers in the equation for the particle number conservation gives:
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Ns = c0V = cinV

2 + coutV

2 , (1)

which can be rearranged:

c0 = cin + cout

2 . (2)

We use the formula above for calculating the initial salt concentration c0
based on cin and cout.

2 Parameters
Since we simulated poly(acrylic acid) in contact with a solution at pH=7
we choose the gel monomers to be fully charged (f = 1) and carry a neg-
ative charge in our simulations. At pH=7 the H+ and OH− concentra-
tions are very low and therefore we neglect them in our simulations. In the
PB model we perform simulations with different choices of the chain length
N ∈ {15, 20, 30, 50} as indicated in the main paper (see Fig. 6). The interpen-
etrating gel simulations were carried for a chain length of N = 40 and various
salt concentrations in the supernatant phase cout ∈ {0.01, 0.02, 0.05, 0.1, 0.2}
mol/L. The resulting initial salt concentrations c0 for Fig. 7 were calculated
as indicated above using the resulting salt concentrations inside the gel cin.

3 Poisson Boltzmann Simulations
For details of the model we refer to previous publications where we introduced
the Poisson-Boltzmann cell gel model.5,6 The core idea of the model is to
describe the behavior of a single chain instead of a network of chains. If a gel
is compressed the end-to-end distance of the chains and the volume which is
available to the chain is reduced. We therefore assign a cylindrical volume
Vchain(Re) = R3

e/A to the chain which depends on its end-to-end distance
and where A =

√
27/4 ≈ 1.3. The value for A arises from simple geometrical

considerations for a fully stretched diamond-like network.4,6 In order to mimic
the electrostatic environment in the gel, where one end of the chain sees the
beginning of the next chain we periodically replicate the cylinder in the
axial direction. Therefore, we effectively deal with the electrostatic problem
of an infinite, penetrable, charged rod. The volume Vchain of the gel is in
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total electroneutral. The single chain is described as fixed charge density
ρf (~r) and elastic contributions.5,6 The charge density of the ion species i
is ρi(~r) = ci(~r)qi and is given by the particle number density ci(~r) and the
charge of the ions qi. The densities of the ion species are distributed according
to

ci(r) = ci,supernatante
−q±ψ(x,y,z)

kBT , (3)
where ci,supernatant = cout are the ion densities in the reservoir and where
kBT is the absolute temperature times the Boltzmann constant. The total
electric potential ψ is obtained via a finite element solver solving the Poisson-
Boltzmann equation:

∇2ψ = − 1
εrε0

(∑
i

qici(~r) + ρf (~r)
)
, (4)

where εr is the relative permittivity, which we choose to be 80 (to mimic
water).
Knowing the ion distributions, the electrostatic potential and the elastic
contributions of the model5,6 we can evaluate the pressure of the system. The
pressure in the gel is calculated using the electrostatic Maxwell pressure, the
kinetic pressure and a stretching pressure.5,6 For further details on how to
calculate the pressure in the gel Pin(V ) we refer to previous publications.5,6

Performing multiple simulations at different volumes gives pressure volume
curves which allow to find the swelling equilibrium of the gel:

Pin(Veq) = Psupernatant. (5)

The reservoir pressure is approximated by the ideal gas pressure of the ions
in the supernatant solution. Information about the salt partitioning can be
obtained via comparing the average ion concentration in the volume which is
available to the chain cin = 〈c−〉V = 1

V

∫
V dV c−(~r) to the ion concentration in

the supernatant phase cout. Since the counter ions of the negatively charged
gel are positive, the concentration of negative monovalent ions is chosen to
determine the salt concentration inside the gel.

4 Molecular Dynamics Simulations
The molecular dynamics (MD) simulations are carried out with the simula-
tion package ESPResSo.8 In order to simulate an interpenetrating network
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of two gels we first setup a single diamond like gel. Then we create the sec-
ond interpenetrating network via creating a new gel with coordinates exactly
shifted by half of the box length in each Cartesian direction. The interpene-
trating networks then are similar to the ones used by Edgecombe et al.2 We
employ the Langevin thermostat to set the temperature in the simulation.
The Langevin equation is integrated using a velocity Verlet algorithm with
a time step of δt = 0.01σ(m/kBT )1/2 where m is the (arbitrary) mass of the
particles – we used m = 1. The choice of m does not affect the simulation
results which we report. We use a semi-grand canonical ensemble where salt
is allowed to enter the gel. In this grand canonical setup we prescribe the salt
concentration of the supernatant phase and also account for non-idealities in
the reservoir via the excess chemical potential, similar to previous simulation
setups.4-6 At each imposed volume we then record the virial pressure inside
the gel Pin(Vgel). In order to find the swelling equilibrium of the gel we sim-
ulate the gel at different volumes and record pressure volume curves. We
then find the equilibrium swelling via balancing the pressure in the gel with
the pressure of the bath, see eqn (5). As before in the PB model, the salt
concentration inside the gel is the number of negative ions c-,gel = N-,gel/Vgel,
where the volume of the gel Vgel is the box length cubed.

4.1 Interaction Potentials
All particles interact via the WCA potential:7

EWCA(r) =

4ε
[(

σ
r

)12
−
(
σ
r

)6
]

+ ε if r < 21/6σ

0, else

where r is the distance between two particles. As parameters we used σ =
0.355 nm and ε = 1 kBT .
Bonds between particles in the polymers are described via the FENE potential:3

EFENE(r) = −1
2kFENER

2
max ln

(
1−

[
r

Rmax

]2
)
,

where Rmax is the maximal stretching of the bond, kFENE a constant that
defines the strength of the bond. If the particle distance r approaches ∆Rmax
the bond potential diverges. As parameters we used kFENE = 30.0 kBT/σ
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and Rmax = 1.5σ.

4



The Coulomb interaction energy of two charges is given by:

Eel(r) = λBkBT
z1z2

r
, (6)

where z1 = 1 and z2 = 1 are the valencies of the two charges, kBT the thermal
energy and λB the Bjerrum length. In our MD simulations this interaction is
handled via the P3M algorithm.1 As parameter we used the Bjerrum length
of water λB = 2.0σ = 0.71 nm.
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