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I. BOND-ORIENTATIONAL ORDER PARAMETERS (BOP)

Figure S1 shows two characteristic symmetries of hexagonal cylinder systems: two-fold

in-cylinder symmetry and six-fold inter-cylinder symmetry. Note that in Fig. S1(b), the

in-cylinder neighbors as in Fig. 2 of the main text are not shown: this figure is intended

to show only the idealized arrangement of cylinders, represented by six bond vectors in the

plane perpendicular to the running direction of cylinders. The BOP values for these two

bond vector distributions are shown in Table S1 for all degrees from 2 to 12. Two important

aspects are worth noting in Table S1. First, all even-degree BOPs show maximal response

of 1.0 to the two-fold symmetric distribution in Fig. S1(a). This means that even-degree

BOPs, including q6, might show false-positive responses when numerous two-fold symmetric

noises are included in the bond vector distribution, which is the case in Fig. 2(c-d) in the

main text. Second, considering the planar six-fold symmetric distribution representing the

hexagonal cylinder arrangement, q6 indeed shows strongest response of 0.741, indicating that

q6 is the relevant order parameter for detecting the six-fold symmetry of hexagonal cylinder

phase given that the neighbor set is properly defined to exclude in-cylinder neighbors.

FIG. S1. Bond vector distribution of (a) two-fold, (b) six-fold and (c) four-fold symmetric

neighbor sets. The central and neighbor atoms are expressed as black dots, and the bond vectors

are represented as arrows.
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l
ql

(a) (b) (c) (a) (b) (c)

- - - - 2 1.000 0.500 0.500

3 0.000 0.000 0.000 4 1.000 0.375 0.829

5 0.000 0.000 0.000 6 1.000 0.741 0.586

7 0.000 0.000 0.000 8 1.000 0.533 0.798

9 0.000 0.000 0.000 10 1.000 0.456 0.614

11 0.000 0.000 0.000 12 1.000 0.699 0.783

TABLE S1. BOP (ql) values of the three bond vector distributions shown in Fig. S1(a-c), for

degrees l ∈ {2, · · · , 12}. For the definition of ql, see main text.

II. LAMELLAR SPACING AND CYLINDER-CYLINDER DISTANCES

In this section, we provide the two length scales, the lamellar spacing and cylinder-cylinder

distances, for the systems studied in the main text. These values are estimated from time

averages of the box sizes for NPT simulation cells of well-oriented mesophases. For the

Kumar-Molinero (KM) system [1], two simulation cells were used. For both simulation cells,

the temperature was fixed to 417 K and zero pressure was applied. Anisotropic pressure

FIG. S2. Snapshot of the simulation cells used for calculation of (a) lamellar spacing in the KM

system, (b) cylinder-cylinder distance in the KM system, and (c) cylinder-cylinder distance in DPD

simulation of block copolymers (see the main text for computational details). Pink beads and cyan

beads represent the minority and the majority block, respectively. Periodic boundary condition

was applied for all three Cartesian directions.
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coupling (coupled in x and y directions) was used for lamellar spacing calculation, whereas

isotropic pressure coupling was used for cylinder-cylinder distance calculation. The first

simulation cell in Fig. S2 (a) consisted of 18 alternating lamellar layers formed by 8000

particles with the number fraction fA = 0.5. The layers were stacked in the z direction

whose side length is denoted by Lz. Then the lamellar spacing can be estimated from the

time average of Lz/9 measured as 2.0748 ± 0.0025. The second simulation cell in Fig. S2

(b) consisted of 43 hexagonally-arranged cylinders oriented along 111 orientation formed by

1000 particles with the number fraction fA = 0.76. Denoting the three side lengths of the

simulation cell by Lx, Ly, and Lz, the cylinder-cylinder distance can be estimated from the

time average of (LxLyLz)
1/3/4 measured as 2.4151± 0.0092. The cylinder-cylinder distance

obtained from a larger system with 8,000 particles were 2.4148± 0.0021. For the dissipative

particle dynamics (DPD) simulation, the snapshot in Fig. S2 (c) show the cylinders arranged

within the xy plane. Let side lengths of simulation box in x and y directions be denoted Lx

and Ly, respectively. Then distance between cylinder cores estimated from the time average

of Ly/2 and Lx/
√

3 during the simulation was 7.7477± 0.0459.

III. BIASED MOLECULAR DYNAMICS SIMULATION

To evaluate structures represented by different sets of collective variables (CVs), bi-

ased molecular dynamics simulations were performed with LAMMPS package patched with

PLUMED 2.4 [2, 3] using RESTRAINT module. During the NVT simulation, the tempera-

ture was set to 700 K using Nóse-Hoover thermostat with time constant of 5∆t. Disordered

state of 1000 KM particles with the number fraction fA = 0.76 equilibrated at 700 K were

Criteria
SET 1 SET 2 SET 3

q̄2 q̄6 q̄2 q̄8 q̄2 q̄8

rcut 2.075 - 1.91 3.39 2.075 -

rin - 2.0 - - - 3.0

rout - 2.5 - - - 4.0

rLD 2.5 2.5 1.91 3.39 2.5 4.0

TABLE S2. The cutoff criterion used for the bias molecular dynamics simulations. See main text

for the definitions of BOPs q̄l and the cutoff criterion rcut, rin, rout, and rLD.
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FIG. S3. Snapshot of the generated structures using the set of CVs (a) q̄2 = 0.781 and shell-based

q̄6 = 0.461, (b) q̄2 = 0.931 and q̄8 = 0.244, and (c) q̄2 = 0.781 and shell-based q̄8 = 0.272. Red

beads and transparent black beads represent the minority and the majority block, respectively.

Periodic boundary condition was applied for all three Cartesian directions.

used as the initial configuration. The simulations were run for 100τ timesteps during which

a harmonic potential with the force constant κ = 105 was applied. The minima of the

harmonic potentials were placed at the corresponding values of the CVs obtained from a

trajectory of the hexagonal phase equilibrated at 300 K. The cutoff choices are summarized

in Table S2.

IV. CONVERGENCE OF METADYNAMICS SIMULATIONS

The simulation time for various metadynamics simulations has been decided from ob-

servation of the free energy differences between the disordered and ordered basins in our

system of interest: fA = 0.76. The free energy differences of three independent runs for

the temperatures of 400 K and 425 K converge to the same value around 5 × 104τ . As for

375 K, the average value oscillates around 11.99± 1.58 kcal/mol. This is partly due to the

small terrace formed at the location of the metastable basin. Nevertheless, the resulting

transition temperatures using the data for 375 K at 5×104τ and 7.5×104τ are 417.4±0.6K

and 417.4± 0.2K, respectively. These values are reasonably in agreement, and therefore we

concluded that the simulation time of 5× 104 (or 107 timesteps) is enough.
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FIG. S4. Free energy differences between the disordered and ordered basins during metadynamics

simulations for (red) 375 K, (blue) 400 K, and (black) 425 K.

V. FINITE TEMPERATURE STRING METHOD FOR DISORDERED-TO-HEXAGONAL

TRANSITION AT 350 K

For the order-disorder transition in the system of f = 0.76 at 350 K, there is a local

minimum at q̄2 = 0.5 and q̄6 = 0.128 on the concerning free energy surface. The depth of this

basin was analyzed using MATLAB implementation of the Finite Temperature String (FTS)

algorithm [4, 5]. The string converged to a principal curve in 104 iterations at temperature

µ = 2.7. The final string, transition tube, and relative free energy along the curve are shown

in Fig. S5. Fig. S5 (c) indicates that there is indeed a local minimum with its relative free

energy of around 3 kcal/mol separated from the global minimum by a low barrier.

FIG. S5. Results of the finite temperature string method: (a) Final string and associated

isocommittor surfaces at 350 K with respect to q̄2 and q̄6. (b) Transition tube at 350 K with

respect to q̄2 and q̄6. (c) Relative free energy along the possible minimum energy path.
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