1	Electronic Supplementary Information [ESI]
2	
3	Breakups of encapsulated surfactant-laden aqueous droplet under DC
4	electric field
5	Muhammad Salman Abbasi, ^{1,2} Ryungeun Song, ¹ and Jinkee Lee ¹ *
6	¹ School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419,
7	Republic of Korea
8	² Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore,
9	Pakistan
10	*Corresponding author:
11	Professor Jinkee Lee. Tel.: +82-31-299-4845, E-mail address: lee.jinkee@skku.edu
12	
13	
14	
15	
16	
17	
18	
19	
20	

In the ESI, we provide details regarding the calculation of the electric and capillary stresses acting on the core droplet. Here, we also provide measured interfacial tension (γ_{12}) values corresponding to non-dimensional surfactant concentration (C^*).

We consider a spherical core droplet of radius r_c that is encapsulated by an outer shell of radius r_s ($r_c = \beta r_s$) and suspended in immiscible ambient liquid under a direct-current (DC) electric field. The stresses acting on point P ($\theta = 0$) at the core interface are analyzed.

27

28 Calculation of electric stress

29 The DC electric field is applied to the double-emulsion droplet. Owing to the discontinuity of 30 the electrical properties, electric stresses are generated at the interfaces, which are given by 31 the Maxwell stress tensor.

32
$$\sigma_M = \varepsilon(\vec{E}\vec{E} - E^2 I/2) \tag{S1}$$

33 The increase in the stresses at the core interface can be conveniently represented by normal34 and tangential stress components:

35
$$\|(\sigma_M \cdot \vec{n}) \cdot \vec{n}\| = \|\varepsilon(\vec{E} \cdot \vec{n})^2 - \varepsilon(\vec{E} \cdot \vec{t})^2\|$$
 (S2)

$$36 \quad \left\| \left(\sigma_M \cdot \vec{n} \right) \cdot \vec{t} \right\| = \left\| \varepsilon (\vec{E} \cdot \vec{t})^2 \right\|_{.} \tag{S3}$$

37 Here, ||A|| indicates an increase in *A*, and \vec{n} and \vec{t} represent unit vectors normal and tangential 38 to the interface, where $\vec{n} \equiv r$ and $\vec{t} \equiv \theta$.

39
$$\|(\sigma_M \cdot \vec{n}) \cdot \vec{n}\|_{12} = (\varepsilon_2 E_{n2}^2 - \varepsilon_1 E_{n1}^2)/2 - (\varepsilon_2 E_{t2}^2 - \varepsilon_1 E_{t1}^2)$$
 (S4)

40
$$\|(\sigma_M \cdot \vec{n}) \cdot \vec{t}\|_{12} = (\varepsilon_2 E_{t2} E_{n2} - \varepsilon_1 E_{t1} E_{n1})$$
 (S5)

41 Here, $E_n = \partial \phi / \partial n$ and $E_t = \partial \phi / \partial t$. According to the continuity of the normal component of the 42 electric current density and the continuity of the tangential component of the electric field at 43 the interface, $E_{n1} = E_{n2}/R_{12}$ and $E_{t1} = E_{t2}$, respectively. Then, the above equations can be 44 simplified as follows:

45
$$\|(\sigma_M \cdot \vec{n}) \cdot \vec{n}\|_{12} = \varepsilon_2 (1 - S_{12}/R_{12}) E_{n2}^2/2 - (1 - S_{12}) E_{t2}^2$$
 (S6)

46
$$\|(\sigma_M \cdot n) \cdot t\|_{12} = \varepsilon_2 (1 - S_{12}/R_{12}) E_{t2} E_{n2}.$$
 (S7)

47 The electric-field components are determined by the gradient of the electric potential (φ) in
48 the spherical coordinate system:

$$49 \quad \vec{E}_i = -\left(\hat{r}\frac{\partial}{\partial r} + \partial \frac{\partial}{r\partial \theta}\right)\phi_i \qquad , \tag{S8}$$

50 where i = 1, 2, and 3 for the core, shell, and ambient liquids, respectively.

The electric potential (ϕ_i) for each phase is obtained by solving the governing Laplace equation $(\nabla \phi_i = 0)$ of the charge conservation with the following boundary conditions: (1) $\phi_1(r_{c'}\theta) = \phi_2(r_{c'}\theta);$ (2) $\phi_2(r_{s'}\theta) = \phi_3(r_{s'}\theta);$ (3) $\sigma_1 \partial \phi_1 / \partial r(r_{c'}\theta) = \sigma_2 \partial \phi_2 / \partial r(r_{c'}\theta);$ (4) $\sigma_2 \partial \phi_2 / \partial r(r_{s'}\theta) = \sigma_3 \partial \phi_3 / \partial r(r_{s'}\theta);$ (5) $\phi_1(0,\theta)$ is bounded; (6) $\phi_3(r,\theta) = E_0 r \cos\theta,$ where $r \rightarrow \infty$.

55
$$\phi_1 = 9\xi r E_o cos \theta_i$$
, (S9a)

56
$$\phi_2 = 3\xi (R_{12} + 2) [(r/r_s) - \varsigma (r_s/r)^2] r_s E_o \cos\theta$$
 (S9b)

57 Here,

58
$$\xi = 1/[(R_{12}+2)(R_{23}+2)+2\beta^3(R_{12}-1)(R_{23}-1)], \zeta = \beta^3(R_{12}-1)/(R_{12}+2).$$
 (S10)

59 Substituting Eq. (S9) into Eq. (S8) and substituting the resulting equation into Eqs. (S6) and 60 (S7) yields the electric stress components at point *P*:

61
$$F_E = \|(\sigma_M \cdot \vec{n}) \cdot \vec{n}\|_{12} = 81\xi^2 S_{23} (R_{12}^2 - S_{12}) \varepsilon_3 E_o^2 / 2$$
 (S11)
62 $\|(\sigma_M \cdot \vec{n}) \cdot \vec{t}\|_{12} = 0$ (S12)

63

64 Calculation of capillary stress

65 Initially, when there is no electric field, the core droplet retains a spherical shape, and the66 capillary stress is given by the Young–Laplace equation:

67
$$F_i = \frac{2\gamma_{12}}{r_c}$$
 (S13)

68 When the electric field is applied, the core droplet deforms, and the capillary stress becomes

69
$$F_f = 2\gamma_{12}(1/r_{c1} - 1/r_{c2})$$
 (S14)

70 where r_{c1} and r_{c2} represent the principal radii of curvature of the core droplet. The equation of 71 the deformed surface of the droplet is given as

$$\overline{R} = r \left\{ 1 + \frac{2}{3} D (3\cos^2 \theta - 1) \right\}, \quad D = \frac{(\alpha - \overline{\alpha})}{(\alpha + \overline{\alpha})}.$$
(S15a,b)

73 Here, α and $\bar{\alpha}$ represent the semi-major and semi-minor axes of the deformed core droplet, 74 respectively.

75 The principal radii of curvature of the deformed core droplet (ellipsoid) are given as

$$r_{c1} = \frac{\beta^2}{\alpha} \operatorname{and} r_{c2} = \frac{\alpha^2}{\beta}.$$

77 Using Eqs. (S17a) and (S17b), for $D \ll 1$, the following can be derived:

78
$$\left(\frac{1}{r_{c1}} + \frac{1}{r_{c2}}\right) = \frac{8}{\alpha} - \frac{6r_c}{\alpha^2}$$
 (S16a)

79 Thus, the change in the capillary stress can be expressed as

80
$$F_f - F_i = \frac{2\gamma_{12}/r_c - \gamma_{12}(8/\alpha - 6r_c/\alpha^2)}{6r_c/\alpha^2}$$
 (S17)

81

82 Measured interfacial tension values

83 We measured the interfacial tension between aqueous core-silicone oil (γ_{12}) at 84 different surfactant concentration ($C_{Tween \ 80}$) represented in terms of non-dimensional 85 surfactant concentration (C^*). The results for few specific cases are provided in Table S1.

86 Table S1. Measured interfacial tension (γ_{12}) corresponding to non-dimensional surfactant 87 concentration (C^*)

Sr. No	Non-dimensional Surfactant Concentration (<i>C</i> *)	Interfacial Tension (γ ₁₂) [N/m ³]
1	0	0.0353
2	0.05	0.0271
3	0.15	0.0189
4	1	0.0133

88