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APPENDIX

A. ANGULAR DYNAMICS FOR COUPLED
RIGID LINKS

In this section we derive the angular dynamics for two
connected rigid links, each of length `, in a highly vis-
cous fluid. We assume each of the links has a friction
coefficient per unit length µ, and that there is a bending
modulus κ for the junction between the links. This sim-
plified system serves as a basis for deriving the appropri-
ate dynamics of the junction angle for the heterogeneous
worm-like chain.

We define a given configuration of the system by the
center of mass positions for the two rigid rods (~r1, ~r2)
and their normalized orientations (~u1, ~u2). The overall
energy for this configuration is then given by,

E = κ(1− ~u1 · ~u2) + ~λ ·
(
~r1 +

`

2
u1 − ~r2 +

`

2
~u2

)
. (S1)

Here, the first term corresponds to the bending energy of
the junction between the two rods and the second term

uses a Lagrange multiplier (~λ) to enforce the connectivity
of the two inextensible rods at the junction.

In the freely draining approximation, and in the ab-
sence of Brownian forces, the overdamped dynamics of
such a system are defined by the equations,

ζr~ωi = −~ui ×
∂E

∂ui

ζt
d~ri
dt

= −∂E
∂~ri

,

(S2)

where ~ωi gives the rotational velocity for each rod (i =
1, 2). Here, ζr = µ`3/12 is the rotational frictional coeffi-
cient of each rod around its center of mass and ζt = µ` the
translational friction coefficient[1]. The Lagrange multi-

plier ~λ can be obtained from the constraints:

d

dt

(
~r1 +

`

2
u1 − ~r2 +

`

2
~u2

)
· ~u1 = 0

d

dt

(
~r1 +

`

2
u1 − ~r2 +

`

2
~u2

)
· ~u2 = 0.

(S3)
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Solving these equations yields ~λ · ~ui = 6κ(1−ρ2)
`(5−3ρ) , where

ρ = ~u1 · ~u2. The dynamics of the angular coordinate ρ
are then given by,

dρ

dt
=

48κ(1− ρ2)

µ`3(5− 3ρ)
. (S4)

This expression gives the effective friction coefficient
for the coordinate ρ according to

dρ

dt
= − 1

ζ(ρ)

∂Ebend

∂ρ
= − κ

ζ(ρ)

ζ(ρ) =
µ`3(5− 3ρ)

48(1− ρ2)
=
kBT

D
(0)
ρ

5− 3ρ

6(1− ρ2)

(S5)

where D
(0)
ρ is the effective diffusivity along the ρ coordi-

nate.

For the angular dynamics of a junction in a continuum
worm-like chain, changes in the angle require dragging
along a length of chain that should scale as the junction
size ∆. We select an effective link length ` = 2∆ for
use in Eq. 7. The prefactor of 2 is obtained from fitting
to Brownian dynamics simulations with fixed end-to-end
distance (as shown in Fig. 2a). This is the only fitting
parameter in the theory and is used for all results shown
in subsequent figures.

The dynamic prefactor D
(0)
ρ for movement along the

ρ coordinate describes the rapid dynamics of the short
chain length represented by the junction region. Conse-
quently, this prefactor is dependent only on the length
scale ∆ and not on the total chain length. In Supple-
mental Fig. S1 we show a comparison between Brownian
dynamics simulations and the approximate kinetic model
for two different chain lengths, showing that the same

prefactor D
(0)
ρ is applicable regardless of chain length.

We note that for a fixed normalized end-to-end distance
r, the mean first passage time to a cutoff junction energy
over the ρ coordinate is higher for a longer chain. This
effect is due to the fact that the landscape for a fixed r
is flatter for a long chain, leading to a slower approach
down the free energy hill towards steeper junction an-
gles. This comparison thus highlights that the kinetics
in ρ are fundamentally distinct from Kramers’ transition
state theory, as they involve sliding down towards a free
energy valley rather than transition over an energy bar-
rier.
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Figure S1. Comparison of approximate dynamics over free
energy landscape vs Brownian dynamics simulations, for two
different chain lengths. The mean first passage time to a
cutoff junction energy E∗ is plotted for a fixed normalized
end-to-end distance r = R/(2L) = 0.5, for a chain of dimen-
sionless length N = 0.25 and one of length N = 0.5. The
same junction size ∆ = `p,1/κ and same dynamic prefactor

D
(0)
ρ (Eq. 7) is used for both chains.

B. MEAN FIRST PASSAGE TIME ON A 1D
LANDSCAPE

For one-dimensional systems with spatially varying dif-
fusivity D(x) and free energy landscape F (x), it has
been shown that the Fokker-Planck equation which cor-
rectly reproduces the Boltzman distribution in the steady
state[2] is given by,

dG(x, t|x0)

dt
=

∂

∂x

[
D(x)

(
1

kT

∂F

∂x
G+

∂G

∂x

)]
(S6)

where G(x, t|x0) is the Green’s function giving the distri-
bution over x at time t for a system that started at posi-
tion x0. A corresponding backward Kolmogorov equation
can be derived for this system[3] as,

dG

dt
=

[
−D(x0)

kT

∂F

∂x0
+
∂D

∂x0

]
∂G

∂x0
+D(x0)

∂2G

∂x20
(S7)

Assuming the system has an absorbing boundary at
a and a reflecting boundary at L, the mean first pas-
sage time is defined based on the probability Q(t|x0) =∫ L
a
G(x, t|x0)dx that the absorbing boundary has not yet

been reached. Namely, the MFPT is given by T (x0) =

−
∫∞
0
tdQdt . We solve for T (x0) using Eq.S7 in a man-

ner analogous to previous calculations with a constant
diffusivity[4, 5]. Assuming an equilibrated distribution
of starting positions, the overall mean first passage time

Figure S2. Schematic of discrete state model for dynamics
of the chain ends. Each state (green circle) corresponds to a
particular chain end separation (ri), and has a specific time-
scale for fracture (τi). Transition rates between states (k±i )
are defined by Eq. 9. For calculations of first passage time to
a given end separation (Fig. 2B), the fracture state and all ri
below a particular cutoff r∗ are removed from the model.

is then given by

〈T 〉 =
1∫ L

0
e−F (x)/kT dx

×

×

[∫ L

a

dx

∫ x

a

dy

∫ L

y

dz
1

D(y)
e(F (y)−F (z)−F (x))/kT

]
(S8)

The expression in Eq. S8 matches that derived in the clas-
sic paper by Szabo, Schulten, and Schulten[6], modified
for a starting position distributed according to thermal
equilibrium, with first passage times set to zero for those
trajectories that start below the absorbing boundary at
a. We use numerical integration of Eq. S8 to calculate
the mean first passage time for each fixed value of r over
the energy landscape plotted in Fig. 1.

C. MEAN FIRST PASSAGE TIME ON A
DISCRETIZED LANDSCAPE

We consider the calculation of mean first passage time
on a discretized landscape consisting of a network of
states with well-defined transition rates between them.
This approach for calculating low-order moments of tran-
sition times is well established in the field of network
theory[7]. Similar approaches have also been exten-
sively employed in the study of molecular dynamics over
complex landscapes, under the names of “discrete path
sample”[8] and “Markov State Models”[9]. Here, for
convenience, we reproduce the derivation of the MFPT
specifically for our system of interest. Our derivation fol-
lows the same approach as described in prior work on
kinetics with state-dependent rates[10].

Consider a network of states, with each state (ri, for
i = 1, . . . , n) corresponding to a different separation of
the chain ends. The transitions between neighboring
states are treated as memory-less Poisson processes with
rate constants k±i (given by Eq. 9). From each state,
there is another Poisson transition available to a frac-
tured state, with rate constant τi (calculated via Eq. 8).
A schematic of this system is presented in Fig. S2.
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Two versions of this system are used in our manuscript.
In the first (for the calculations in Fig. 2b), the junc-
tion bending is ignored (τi →∞), and we are interested
specifically in the transition time to a particular end-to-
end separation (state r∗). In the second (calculations for
Fig. 2c and Fig. 4), the system is allowed to fluctuate
over all ri states and we are interested in the first pas-
sage time to the fractured state. The same mathematical
formalism can be used for both cases.

We define Pi,j(t) as the transition time distribution
between state i and a neighboring state j and Qi(t) as
the probability the system has not yet left state i after
arriving there. For the Poisson processes used here,

Qi(t) = e−(k
+
i +k−i +1/τi)t

Pi,i±1(t) = k±i Qi(t)
(S9)

We can then calculate the cumulative probability Hi(t)
that the system has not yet reached fracture, given that
it started in state i at time 0. This probability is given
by:

Hi(t) = Qi(t) +

n∑
j=1

∞∑
m=0

∑
i

m−→j

Pik1 ∗ Pik2 . . . ∗ Pkmj ∗Qji,

(S10)

where the summation is over all final states j, and all
paths of length m to get from state i to state j, and the
∗ refer to convolution.

A Laplace transform in time (Ĥi(s) = L[Hi(t)], etc)
converts the convolutions to a product over the propaga-
tors Pij , giving the vectorized expression

Ĥ = Q̂ +

∞∑
m=0

P̂m · Q̂ (S11)

where P̂ is a matrix with entries P̂ij , Q̂ a vector with

entries Q̂i and Ĥ a vector with entries Ĥi. Simplifying
the geometric series then yields

Ĥ = (I− P̂)−1 · Q̂

The mean first passage time to fracture, starting from
state i, is calculated as

MFPTi =

∫ ∞
0

t

[
−dHi(t)

dt

]
dt = Ĥi(s = 0) (S12)

Finally, we average over starting position i with the
appropriate equilibrium Boltzman distribution of start-
ing probabilities in the different states. For the case of
transition to a particular r∗ cutoff, the same approach is
applied except that all states below r∗ are removed from
the system.

We note that this approach relies on a discretization
of the r coordinate, enabling us to separately calculate a
fracture time τi for each discrete state. The discretiza-
tion δr was taken to be sufficiently small that the final
results were independent of discretization value, as shown
in Fig. S3.

Figure S3. Landscape discretization in the r coordinate has
little effect on calculated MFPT to fracture. Plotted is the
percentage difference in MFPT for a discretization of δr =
0.01 versus δr = 0.04, as a function of the junction cutoff
energy E∗. The MFPT is calculated as for Fig. 2c. The two
discretizations give results that differ by less than 1%.

D. BROWNIAN DYNAMICS SIMULATIONS

Brownian dynamics simulations are used to verify our
simplified model for dynamics over a free energy land-
scape in the ρ and r coordinates. We define a discretized
version of the heterogeneous worm-like chain model, us-
ing the standard bead-rod formalism [11], with very stiff
stretching modulus for constraining the length of the
rods. Our chains consist of n = 20 segments of length d,
with bending energy

1

kBT
Ebend =

n−1∑
i=1

κi [1− cos(ρi)] (S13)

for ρi = cos θi and θi the angle between orientations of
each consecutive pair of segments. The prefactor is set to

κi =
`p,1
d for i ≤ 10 and κi =

`p,2
d otherwise. The central

bead represents a junction of size ∆ = d.
Chains are initiated in a thermally equilibrated config-

uration by direct sampling of the segment angles. A stan-
dard Brownian dynamics algorithm [12] with 4th-order
Runge-Kutta time integration[13] is used to propagate

the system forward in timesteps of δt = 10−4 d
2µb

kBT
, where

the µB is the friction coefficient of each bead. Simula-
tions are run until either the chain angle at the 10th bead
(ρ9) or the end-to-end distance reaches a cutoff value, up
to a maximum of 107 timesteps.

Mean first passage times to cutoff cannot be obtained
by direct averaging since many chains to not reach the
cutoff over the simulation time. Instead, we fit the em-
pirical cumulative distribution function for first passage
times to the functional form 1 − exp(−t/τ), to extract
the appropriate time-scale for first passage. 104 chains
are simulated for each data point plotted in Fig. 2.

In addition to simulations with homogeneous chains,
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Figure S4. Transition times in BD simulations with heterogeneous chains. (a) Starting chain configurations were selected from
an equilibrium distribution, and chain ends were held fixed throughout the simulation. Mean first passage times to a junction
energy cutoff of E∗ = 10kbT is shown as a function of chain heterogeneity. Qualitative trend is comparable to analytical
calculations in Fig. 3b. (b) Simulations with free chain ends, for a fixed heterogeneity of h = 10 (heterogeneous chain) or h = 1
(homogeneously stiff chain). The ratio of MFPT for the homogeneous and heterogeneous chain is plotted for different cutoff
junction energies. Qualitative trend is comparable to analytical calculations in Fig. 4. Parameters used in the simulations were

N = 0.25, κ = 20kbT, ∆̂ = 0.1. Error bars are standard errors obtained from a bootstrapping (100 bootstrapping replicates
generated for each point).

Brownian dynamics simulations of chains with hetero-
geneity up to h = 10 are shown in Supplemental Fig. S4.
Chains of length 20 segments (21 beads) were simu-
lated and mean first passage times extracted as described
above. The junction was defined as the last bead located
wholly on the stiff side of the chain (bead 10). Because
simulations cannot access the very rare transition events
associated with high junction energy cutoffs, we used a
lower cutoff energy (E∗ = 10kBT ) for chains with fixed
end positions. Initial simulation configurations were se-
lected from an equilibrium distribution. The resulting
transition times (Fig. S4a) show the same qualitative de-
pendence on chain heterogeneity as seen with the kinetic
model (Fig. 3b,c).

Similarly, we carried out simulations of highly hetero-
geneous (h = 10) and homogeneous (h = 1) chains where
the chain ends were free to move throughout the simu-
lation (Supplemental Fig. S4b). These simulations also
exhibit the same qualitative behavior as predicted by our
approximate kinetic model (Fig. 4): a modest speed-up in
the first passage time is obtained for heterogeneous chains
over homogeneous chains with free ends. This speed-
up is evident primarily at intermediate cutoff energies,
where the junction has to bend substantially to achieve
the cutoff but the transition still happens relatively fast
compared to the equilibration of the chain ends. It should
be noted that these simulations are very coarse-grained,
with the soft side persistence length having a value not
much longer than individual segment lengths (`p,2 = 2d).
Hence, the behavior of the soft side of the chain is not
fully resolved, which may account for the slight quantita-
tive shift in the ratio of transition times when compared
with kinetic model calculations (Fig. 4).

The similarity between simulation results and the ap-
proximate kinetic model helps substantiate the primary
result of our manuscript – the phenomenon that chain
heterogeneity can enhance fracture at a localized junc-
tion region.

E. CAPTIONS FOR SUPPLEMENTAL VIDEOS

� Supplemental Video 1: Snapshots of Brown-
ian dynamics simulation for a homogeneously stiff

chain with N = 0.25, ∆̂ = 0.1, and h = 1. The
last 300 frames of a trajectory ending in fracture
(E∗ = 16kBT ) are shown, with the corresponding
positions on the energy landscape (From Fig. 1b)
indicated. Junction color corresponds to the bend-
ing energy at the junction (Ejunc; beige for low en-
ergy, red for high energy). The closer approach of
the chain ends as the junction bends can be seen
towards the end of the video.

� Supplemental Video 2: Snapshots of Brown-
ian dynamics simulation for a heterogeneous stiff

chain with N = 0.25, ∆̂ = 0.1, and h = 10. The
last 300 frames of a trajectory ending in fracture
(E∗ = 16kBT ) are shown, with the corresponding
positions on the energy landscape (From Fig. 1d)
indicated. Junction color corresponds to the bend-
ing energy at the junction (Ejunc; beige for low en-
ergy, red for high energy).
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