Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supporting information

Structure and Dynamics of Lipid Membranes Interacting with Antivirulence Endphosphorylated Polyethylene Glycol Block Copolymers

Jing Yu^{a,b,†}, Jun Mao^{a,b}, Michihiro Nagao^{c,d}, Wei Bu^e, Binhua Lin^{e,f}, Kunlun Hong^g, Zhang Jiang^h, Yun Liu^{c,i}, Shuo Qian^j, Matthew Tirrell^{a,b*}, Wei Chen^{a,b*}

^aCentre for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, USA, 60439.

^bPritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA, 60637. ^cNIST Centre for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA, 20899-6102.

^dCentre for Exploration of Energy and Matter, Indiana University, Bloomington, IN, USA, 47408.

^eCentre for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA, 60637. ^fJames Franck Institute, University of Chicago, Chicago, IL, USA, 60637.

^gCentre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 37831.

^hAdvanced Photon Source, Argonne National Laboratory, Lemont, IL, USA, 60439. ⁱDepartment of Chemical and Biomolecular Engineering, Centre for Neutron Science, University of Delaware, Newark, DE, USA, 19716.

^jBiology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 37831 [†]Current address: School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798.

Figure S1. SANS profiles of hABAPEG (a) and hPi-ABAPEG (b) in D₂O with different concentrations. (c) SANS profiles (symbols) and the best-fit results (solid lines) with a worm-like chain model of 1 wt% hABAPEG and hPi-ABAPEG in D₂O.

Note: SANS profiles of ABAPEG and Pi-ABAPEG copolymers in D_2O with different concentrations at high q range are proportional to each other, indicating there are no significant differences of local chain conformation before and after end-phosphorylation. This is consistent with the best-fit results with a worm-like chain model.

Figure S2. SLD Determination of hPi-ABAPEG and dPi-ABAPEG copolymers: (a) the square root of SANS intensities of hPi-ABAPEG in the mixtures of H₂O and D₂O with different volume ratios; (b) the square root of SANS intensities of the mixture of hPi-ABAPEG and dPi-ABAPEG with different weight fractions in D₂O. SANS intensities shown here are taken at $q = 0.2 \text{ Å}^{-1}$.

Note: In Figure S2 (a), the SLD of hPi-ABAPEG copolymer is determined as 0.699×10^{-6} Å⁻² at the square root of SANS intensity equal to 0 cm⁻¹ through a linear fit. As the SLDs of hPi-ABAPEG copolymer and D₂O are known, the SLD of dPi-ABAPEG copolymer is determined as 6.27×10^{-6} Å⁻² by the cross point of the linear fit of the square root of SANS intensities at the weight fraction of hPi-ABAPEG equal to 0. 6.27×10^{-6} Å⁻² is corresponding to the SLD of a D2O/H2O mixture with a volume ratio of 98.5:1.5.

Figure S3. (a) NSE spectra of hABAPEG and hPi-ABAPEG in D₂O solutions at 37 °C at different q values. The corresponding q values [Å⁻¹] are indicated. Lines through the points represent the single stretched exponential fits, which describe the data well. (b) q-dependence of the characteristic time, Γ , obtained from the fittings. The segmental dynamics of polymer chains has no significant changes after end-

Figure S4. Normalized X-ray reflectivity, R/R_F , of hDMPC monolayers at the air-water interface and water with a mass fraction of 0.1 % hABAPEG subphases.

Figure S5. DLS measurements show that hDMPC ULV vesicles at 37° C and 20° C and in the presence of 1 %, 3 %, and 5 % hPi-ABAPEG copolymers. For each condition, the radii measured at different times are normalized by the mean ULV radius (61 nm) measured at time = 0 h from the same condition.

Figure S6. Temperature-dependent κ of pure DMPC ULVs and DMPC ULVs in the presence of 1% dPi-ABAPEG copolymers.