Supplementary information

A bi-component supramolecular gel for selective fluorescent detection and removal of Hg²⁺ in water

Hai-Long Yang^a, Xiao-Wen Sun^a, You-Ming Zhang^{a,b*}, Zhong-Hui Wang^a, Wei-Zhu^a, Yan-Qing Fan^a, Tai-Bao Wei^a, Hong Yao^a and Qi Lin^{a*}

^a Research Center of Gansu Military and Civilian Integration Advanced Structural Materials;
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou,
Gansu, 730070, P. R. China
^b College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu,
730070, P. R. China
* Corresponding author.

E-mail addresses: zhangnwnu@126.com (Y.-M. Zhang), linqi2004@126.com (Q. Lin).

Table of Contents

Synthesis of compound R and Q
(1) The R was synthesized according to previous reports S1 4
Fig. S1 ¹ H NMR spectrum of the R in DMSO- d_6
Fig. S2 ¹³ C NMR spectrum of the R in DMSO- d_6
Fig. S3 ESI-MS spectrum of the R
(2) The Q was synthesized according to previous reports S2
Fig. S4 ¹ H NMR spectrum of the Q in DMSO- d_6
Fig. S5 ¹³ C NMR spectrum of the Q in DMSO- d_6 7
Fig. S6 ESI-MS spectrum of the Q7
Table S1. Gelation properties of the supramolecular gel RQ.
Table S2. Optimum water content of gelation conditions 8
Fig. S7. Photograph of gelling ability of the R and Q at different ratios
Fig. S8. (a) Natural photos and (b) UV-vis spectra responses of the supramolecular
gel RQ (DMSO-H ₂ O (6.1 : 3.9, v/v)) upon adding of various metal ions (Mg ²⁺ , Ca ²⁺ ,
$Pb^{2+}, Cr^{3+}, Fe^{3+}, Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+}, Cd^{2+}, Hg^{2+} and Ag^{+}).$
Fig. S9 . Fluorescent responses of the (a) \mathbf{RQ} , (b) $\mathbf{RQ} + \text{Hg}(\text{ClO}_4)_2$ solid sample9
Fig. S10. Fluorescent responses of the (a) RQ , (b) RQ + TBAClO ₄ , (c) RQ +
$Hg(ClO_4)_2$, (d) $\mathbf{RQ} + Hg(ClO_4)_2 + TBAClO_4$ and (e) $\mathbf{RQ} + Hg(ClO_4)_2 + TBAI10$
Fig. S11. Fluorescence response photos of the \mathbf{RQ} and Hg^{2+} at different ratios10
Fig. S12. The photograph of the linear range
Table S3 Comparison of the limit of lowest detection of the Hg^{2+} -sensor with
previously reported Hg ²⁺ sensor11
Table S4 The ICP date of xerogel \mathbf{RQ} for Hg^{2+} 11
Fig. S13 . Fluorescence spectra of the RQ , RQ + Hg ²⁺ and RQ + Hg ²⁺ + I ⁻ 12
Fig. S14. Fluorescence spectra of the \mathbf{RQ} + Hg^{2+} in the presence of different
concentrations of aqueous I ⁻ and fluorescence changes at 460 nm

Fig. S15. The photograph of the linear range. 13
Fig. S16 . The changes of fluorescent intensity "OFF-ON-OFF" cycles of the RQ , controlled by the alternative addition of Hg^{2+} and I ⁻
Fig. S17 . The partial ¹ H NMR spectra of the R in DMSO- d_6 with Q [(a) Free R ; (b) ~
(h) with Q (0.2, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 equiv.); (i) Free Q]14
Fig. S18. IR spectra of the Q (red), R (black) and RQ (blue) in KBr disks14
Fig. S19 . The UV-vis spectra and natural photos of the R , Q and RQ ((a) 2.0×10^{-5} M [•] (b) 2.0×10^{-4} M [•] (c) 2.0×10^{-3} M) 15
Fig. S20. Mass spectrum of the RQ. 15
Fig. S21. (a) Fluorescent photos and (b) fluorescence spectra responses of the R , Q , RQ and RQ + Hg ²⁺ (DMSO-H ₂ O (6.1 : 3.9, v/v) binary solution)16
Fig. S22. The possible ICT processes during RQ assembly and Hg^{2+} response16
Fig. S23 . ESP maps of the R is calculated at the B3LYP/6-31G level of theory17
Fig. S24 . ¹ H NMR spectra of the (a) RQ and (b) RQ + Hg ²⁺ , (c) RQ + Mg ²⁺ , (d) RQ + Ca ²⁺ , (e) RQ + Pb ²⁺ , (f) RQ + Zn ²⁺ , (g) RQ + Cd ²⁺ , (h) RQ + Ag ⁺ 17
Fig. S25 . IR spectra of the RQ (black), RQ + Hg ²⁺ (red) and RQ + Hg ²⁺ + I^- (blue) in KBr disks
Fig. S26. (a) IR spectra of the \mathbf{RQ} + \mathbf{Ca}^{2+} (black), \mathbf{RQ} + \mathbf{Mg}^{2+} (red) and \mathbf{RQ} (blue) in
KBr disks; (b) IR spectra of the \mathbf{RQ} + Pb ²⁺ (black), \mathbf{RQ} + Fe ³⁺ (red) and \mathbf{RQ} + Cr ³⁺ (blue) in KBr disks
Fig. S27. (c) IR spectra of the \mathbf{RQ} + Co^{2+} (black), \mathbf{RQ} + Ni^{2+} (red) and \mathbf{RQ} + Cu^{2+}
(blue) in KBr disks; (d) IR spectra of the \mathbf{RQ} + Ag ⁺ (black), \mathbf{RQ} + Cd ²⁺ (red) and \mathbf{RQ} + Zn ²⁺ (blue) in KBr disks
Fig. S28 . Powder XRD patterns of xerogel RQ , RQ + Hg ²⁺ and RQ + Hg ²⁺ + I ⁻ 19
Fig. S29 . Mass spectrum of the $\mathbf{RQ} + \mathrm{Hg}^{2+}$
Notes and references

Synthesis of compound **R** and **Q**

(1) The **R** was synthesized according to previous reports S1 .

Scheme S1 The synthesis of the R.

The **R** was synthesized according to literature method. A mixture of the *p*-phenylenediamine (5 mmol, 0.99 g), 1, 8- naphthalic anhydride (5 mmol, 0.99 g) in ethanol (50 mL) were was stirred at 85 °C for 24 h. After cooling to room temperature, the precipitate was filtered, then with ethanol recrystallization get yellow powder product **R** (1.30 g, 90%, yield); M.P.:>250 °C. ¹H NMR (400 MHz, DMSO-*d*₆, room temperature) δ (ppm): 8.50-8.47 (m, 4H), 7.91-7.87 (t, *J* = 7.8 Hz, 2H), 6.96-6.94 (d, *J* = 8.6 Hz, 2H), 6.66-6.64 (d, *J* = 8.6 Hz, 2H), 5.27 (s, 2H). ¹³C NMR (DMSO-*d*₆, 150 MHz): ¹³C NMR (DMSO-*d*₆, 150 MHz): 164.35, 148.97, 134.61, 131.79, 131.07, 129.62, 128.09, 127.58, 124.23, 123.10, 114.16. ESI-MS m/z: Calcd for C₁₈H₁₂N₂O₂, [**M** + Na]⁺: 311.0791; found 311.0794.

Fig. S1 ¹H NMR spectrum of the **R** in DMSO- d_6 .

Fig. S3 ESI-MS spectrum of the R.

(2) The \mathbf{Q} was synthesized according to previous reports ^{S2}.

Scheme S2 The synthesis of the Q.

A 20 mL DMF containing 10 mmol (2.64 g) of the 1, 3, 5-benzene-tricarbonyl

trichloride was added drop by drop to a 40 mL DMF solution containing 30.5 mmol (2.86 g) of the 4-aminopyridine and 35mmol (4.8 mL) of the distilled triethylamine at 0 °C with continuous stirring. After stirred for 12 h, the reaction temperature was allowed to rise to room temperature. The resulted product was recrystallized from a mixed solvent of DMSO (100 mL) and H₂O (200 mL) and dried at 80 °C under vacuum (3.50 g, 80%, yield); M.P.: 167-170 °C. ¹H NMR (400 MHz, DMSO-*d*₆, room temperature) δ /ppm: 11.78 (s, 3 H), 8.99 (s, 3 H), 8.67 (s, 6 H), 8.26-8.19 (m, 6 H). ¹³C NMR (DMSO-*d*₆, 150MHz): 165.68, 156.37, 149.58, 135.07, 131.36, 114.75. ESI-MS m/z: Calcd for C₂₄H₁₈N₆O₃, [**Q** + H]⁺: 439.1513; found 439.1507.

-8.99 -8.67 -8.26 -8.26 -8.25 -8.25 -8.20

-11.78

Fig. S4 ¹H NMR spectrum of the \mathbf{Q} in DMSO- d_6 .

Fig. S5 ¹³C NMR spectrum of the **Q** in DMSO- d_6 .

Fig. S6 ESI-MS spectrum of the Q.

Entry	Solvent	State ^a	CGC ^b (%)	Tgel⁰ (℃, wt%)
1	water	Р	1	1
2	acetone	Р	١	1
3	methanol	Р	١	١
4	ethanol	Р	١	١
5	isopropanol	Р	١	1
6	isopentanol	Р	١	1
7	acetonitrile	Р	١	1
8	THF	Р	١	1
9	DMF	S	١	١
10	DMF-H ₂ O	G	5	85(5%)
11	DMSO	S	١	1
12	DMSO-H ₂ O	G	3.5	90(3.5%)
13	ethanediol	Р	١	1
14	benzene	Р	١	١
15	CH_2CI_2	Р	١	١
16	CHCl₃	Р	١	١
17	CH ₂ CICH ₂ CI	Р	١	1
18	petroleum ether	Р	١	1
19	ethyl acetate	Р	١	1
20	n-propanol	P	١	1
21	n-butyl alcohol	P	١	1
22	n-amyl alcohol	Р	١	/
23	cyclohexanol	Р	١	1
24	n-hexanol	P	١	1
25	CCl ₄	Р	- <i>I</i>	/

Table S1. Gelation properties of the supramolecular gel RQ.

^aG, P and S denote gelation, precipitation and solution, respectively.

^bThe critical gelation concentration (wt%, 10 mg/ml = 1.0%).

cThe gelation temperature ($^{\circ}$ C).

Tab	le S2.	Optimum	water	content	of ge	lation	conditions
-----	--------	---------	-------	---------	-------	--------	------------

Entry	Water solvent	State ^a	Tgel⁰ (℃, wt%)
1	0%	S	١
2	5%	S	١
3	10%	S	١
4	15%	P	١
5	20%	P	١
6	25%	P	١
7	30%	P	١
8	35%	G	70
9	39%	G	90
11	45%	G	75
12	50%	G	70

^aG, P and S denote gelation, precipitation and solution, respectively.

^bThe critical gelation concentration (wt%, 10 mg/ml = 1.0%).

^cThe gelation temperature ($^{\circ}$ C).

Fig. S7. Photograph of gelling ability of the R and Q at different ratios.

Fig. S8. (a) Natural photos and (b) UV-vis spectra responses of the supramolecular gel **RQ** (DMSO-H₂O (6.1 : 3.9, v/v)) upon adding of various metal ions (Mg²⁺, Ca²⁺, Pb²⁺, Cr³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Hg²⁺ and Ag⁺).

Fig. S9. Fluorescent responses of the (a) \mathbf{RQ} , (b) $\mathbf{RQ} + \mathrm{Hg}(\mathrm{ClO}_4)_2$ solid sample.

Fig. S10. Fluorescent responses of the (a) **RQ**, (b) **RQ** + TBAClO₄, (c) **RQ** + $Hg(ClO_4)_2$, (d) **RQ** + $Hg(ClO_4)_2$ + TBAClO₄ and (e) **RQ** + $Hg(ClO_4)_2$ + TBAI.

Fig. S11. Fluorescence response photos of the \mathbf{RQ} and Hg^{2+} at different ratios.

Linear Equation: Y=282.6787X + 101.49654 R² = 0.99831

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$
 10

= 4.260 K = 3

LOD = K $\beta \delta/s$ = 4.52 $\beta 10^{-8}$ M.

Fig. S12. The photograph of the linear range.

Table S3 Comparison of the limit of lowest detection of the Hg^{2+} -sensor withpreviously reported Hg^{2+} sensor

No.	Journal, Year, Volume, Page	State	LOD (M)	Adsorption removal rate (%)
1	Talanta, 2014, 118, 111-117	S	$5.0 imes 10^{-8}$	_
2	Anal. Chem., 2015, 87, 5148-5155	S	$1.0 imes 10^{-6}$	_
3	Sen. Actuators B, 2015, 220 381-388	S	5.56×10^{-7}	—
4	Sen. Actuators B, 2016, 226, 332-341	S	$2.36 imes10^{-6}$	—
5	New J. Chem., 2017, 41, 3303-3307	S	$1.785 imes 10^{-7}$	—
6	Sen. Actuators B, 2017, 238, 166-174	S	4.79×10^{-7}	—
7	Chem. Select, 2018, 3, 2088-2091	S	1.70×10^{-6}	—
8	Inorg. Chem., 2018, 57, 120-128	S	$1.50 imes 10^{-7}$	—
9	J. Agric. Food Chem., 2018, 66, 6188-6195	S	$6.0 imes10^{-8}$	—
10	Anal. Methods, 2019, 11, 1879-1883	S	1.60×10^{-7}	—
11	J. Am. Chem. Soc., 2019, 141, 4756-4763	S	$3.0 imes 10^{-7}$	90
12	This work	G	4.52×10^{-8}	91

G and S denote gelation and solution, respectively

lon	Initial concentration (mg/L)	Residual concentration (mg/L)	Adsorption removal rate (%)		
Hg ²⁺	20.1	1.78	91.14		

Table S4 The ICP date of xerogel RQ for Hg²⁺

Fig. S13. Fluorescence spectra of the RQ, $RQ + Hg^{2+}$ and $RQ + Hg^{2+} + I^-$.

Fig. S14. Fluorescence spectra of the \mathbf{RQ} + Hg^{2+} in the presence of different concentrations of aqueous I⁻ and fluorescence changes at 460 nm.

Linear Equation: Y= -344.38061X + 400.8426 R² = 0.99887

Fig. S15. The photograph of the linear range.

Fig. S16. The changes of fluorescent intensity "OFF-ON-OFF" cycles of the RQ, controlled by the alternative addition of Hg^{2+} and I^- .

Fig. S17. The partial ¹H NMR spectra of the **R** in DMSO- d_6 with **Q** [(a) Free **R**; (b) ~ (h) with **Q** (0.2, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 equiv.); (i) Free **Q**].

Fig. S18. IR spectra of the Q (red), R (black) and RQ (blue) in KBr disks.

Fig. S19. The UV-vis spectra and natural photos of the R, Q and RQ ((a) 2.0×10^{-5}

M; (b) 2.0×10^{-4} M; (c) 2.0×10^{-3} M).

Fig. S20. Mass spectrum of the RQ.

Fig. S21. (a) Fluorescent photos and (b) fluorescence spectra responses of the **R**, **Q**, **RQ** and **RQ** + Hg²⁺ (DMSO-H₂O (6.1 : 3.9, v/v) binary solution).

Fig. S22. The possible ICT processes during \mathbf{RQ} assembly and Hg^{2+} response.

Fig. S23. ESP maps of the \mathbf{R} is calculated at the B3LYP/6-31G level of theory.

Fig. S24. ¹H NMR spectra of the (a) RQ and (b) RQ + Hg²⁺, (c) RQ + Mg²⁺, (d) RQ + Ca²⁺, (e) RQ + Pb²⁺, (f) RQ + Zn²⁺, (g) RQ + Cd²⁺, (h) RQ + Ag⁺.

Fig. S25. IR spectra of the RQ (black), $RQ + Hg^{2+}$ (red) and $RQ + Hg^{2+} + I^{-}$ (blue) in KBr disks.

Fig. S26. (a) IR spectra of the \mathbf{RQ} + \mathbf{Ca}^{2+} (black), \mathbf{RQ} + \mathbf{Mg}^{2+} (red) and \mathbf{RQ} (blue) in KBr disks; (b) IR spectra of the \mathbf{RQ} + \mathbf{Pb}^{2+} (black), \mathbf{RQ} + \mathbf{Fe}^{3+} (red) and \mathbf{RQ} + \mathbf{Cr}^{3+} (blue) in KBr disks.

Fig. S27. (c) IR spectra of the \mathbf{RQ} + Co²⁺ (black), \mathbf{RQ} + Ni²⁺ (red) and \mathbf{RQ} + Cu²⁺ (blue) in KBr disks; (d) IR spectra of the \mathbf{RQ} + Ag⁺ (black), \mathbf{RQ} + Cd²⁺ (red) and \mathbf{RQ} + Zn²⁺ (blue) in KBr disks.

Fig. S28. Powder XRD patterns of xerogel RQ, $RQ + Hg^{2+}$ and $RQ + Hg^{2+} + I^{-}$.

Fig. S29. Mass spectrum of the $\mathbf{RQ} + \mathrm{Hg}^{2+}$.

Notes and references

- S1 Y. M. Zhang, B. B. Han, Q. Lin, P. P. Mao, J. F. Chen, H. Yao and T. B. Wei, *Chin. J. Org. Chem.*, 2018, **38**, 1800-1805.
- S2 Y. Q. Fan, J. Liu, Y. Y. Chen, X. W. Guan, J. Wang, H. Yao, Y. M. Zhang, T. B.
 Wei and Q. Lin, *J. Mater. Chem. C*, 2018, 6, 13331-13335.