Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2019

Superlattice Assembly by Interpolymer

Complexation: Supporting Information

Nathan Horst," Srikanth Nayak,* Wenjie Wang,¥ Surya Mallapragada,*' David

Vaknin,? and Alex Travesset*

TAmes Laboratory, and Department of Materials Science and Engineering
TAmes Laboratory, and Department of Chemical and Biological Engineering
9 Division of Materials Science and Engineering, Ames Laboratory, USDOE, Ames, lowa
50011, United States
§Ames Laboratory, and Department of Physics and Astronomy, lowa State University,

Ames, Towa 50011, United States

E-mail: trvsst@ameslab.gov

Effect of PAA length on IPC-mediated assemblies

In our study, Figure 2 shows the structure factor curves obtained for nanoparticle assemblies
with varying PAA lengths. With PAA100kDa, the structure factor (S(Q)) shows a broad
primary peak at Q) = 0.0238 7" indicating a characteristic inter-particle distance of % o~
273A. Broadness of the peak indicates poor crystallinity /packing in the assemblies. In fact,
the assemblies are visible as floating agglomerates of nanoparticles in the suspension and
not as precipitates. In the case of both PAA2k and PAASk, visible precipitates form in
the vials. The structure factor shows features characteristic of the FCC symmetry, which

is in agreement with our previous findings.? For both PAA2k and PAAS5k, the inter-particle

distance is % ~ 257 A, and ~ 265 Arespectively. In the case of assemblies obtained with
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propionic acid, there are agglomerates of nanoparticles, and the corresponding inter-particle
distance in the assemblies is ~ 453 A. These results are tabulated in Table S1.

Table S1: Summary of SAXS results for IPC-mediated nanoparticle assemblies obtained
with varying lengths of PAA. @)y is the primary peak position in the structure factor curves,
and D, is the inter-particle distance in the assemblies

PAA # monomers | Q, (A~1) | D,, (A)
Propionic acid 1 0.017 453
2k 28 0.030 257
bk 69 0.029 265
100k 1389 0.023 273*

Results show that the molecular weight of PAA, under the same monomer concentration,
has an effect on the structure of the nanoparticle assemblies formed via IPCs. Particularly,
very large molecular weight PAA chains (100kDa) lead to poor crystallinity. It is hypoth-
esized that higher molecular weight polymers form IPCs more readily compared to lower

molecular weight polymers, due to the cooperative effect.?*

In fact, a lower limit to the
molecular weight of the polymer required to form IPCs is shown.>® We have shown that
even PEG with molecular weight as low as 800Da can lead to IPC-mediated assembly with
PAA2kDa.? This is likely due to the grafted nature of the PEG. The high local density
of PEG chains could effectively act as a higher molecular weight system. Here, we show
that even propionic acid can lead to nanoparticle assembly. Higher inter-particle distance
shows that these assemblies are more hydrated compared to those obtained with PAA2k
and PAASk. Interestingly, propionic acid cannot directly bridge two nanoparticles, unlike
PAA chains. However, this does not seem to prevent the formation of the assemblies. This

may indicate the presence of solvent mediated effects and Van Der Waals forces in assembly

formation and stability.



Theta Temperature

We determine the P 4 f-temperature Ty, by examining the radius of gyration for differing P 4

lengths and temperatures as shown in Fig. S1.
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Figure S1: The theta temperature of our polymer corresponds to T = 3.5, where 10g(<RTg>)

is constant for increasing log(N).

Hybridizations

The nature of our non-bonded hybridization potential allows for "proximity hybridizations”
as illustrated in Fig. S3. We find that multiple hybridizations can occur at the same site, but
clearly, these hybridizations would vary in strength. The choice of 1.504 as the definition
of a hybridization event ensures that two beads directly opposite a central complementary
bead cannot both simultaneously hybridize, regardless of hybridizer orientation. We note
that the CG beads that we use represent many monomer groups of the real system, but we
acknowledge that precise understanding of the necessary number of hydrogen bonds to drive

IPC would require a model with more specificity.



Hybridization lifetimes are determined for each logged timestep when a given pair of hy-
bridizers are within hybridization distance. Once the hybridization dissociates, we terminate
the lifetime between those hybridizers, which ensures that if there is no exchange outside the
local area, recombination is not counted towards the average hybridization lifetime. This
approach does not account for the lifetime of a hybridization accomplished through multiple
hybridizers, but due to the excess of exchange in the corona, and our counting criteria, we
are confident that the lifetimes presented are typical of the system.

To calculate hybridization residency time within the P4 corona, we determine how many
of the Pp beads that reside in the P 4 corona are exchanged with the bulk material surround-
ing an isolated NC. We see that the flux of Pp beads in and out of the corona is large at
high ¢, and tends towards zero as ¢ is lowered (Fig. 8b). Pp is completely absorbed into the
corona when ¢ is sufficiently low, leading to a net zero flux out of the corona. However, when
we split the corona into two separate shells of equal width (inner and outer), and determine
the flux of Pp in and out of these shells; where, at a net zero flux out of the corona, Pp
is clearly still exchanged (Fig. 8b). Our analysis of hybridization lifetimes and residency
times gives us confidence that we avoid quenching and witness equilibrium behavior in our

simulations.

OPM Model

The optimal packing model (OPM)! defines a dimensionless nearest neighbor distance be-

tween two NCs as

TOPM — (1 + 3V)\)1/3 (1)
where
L
A= (2)
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Figure S2: Percentage of hybridized particles in the Pp/P4 melt. The orange dotted line
corresponds to the value at ey = 15, where hybridizations are happening more readily, but
stoichiometry plays less of a role.

Figure S3: Examples of how the hybridization model can lead to configurations where mul-
tiple "proximity hybridizations” are formed at the same site for a generic short-ranged in-
teraction potential.
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is the dimensionless contour length of the grafted polymer, with NC core radius R, and L

the contour length of the grafted polymer chain, and
v=— (3)

with A; is the molecular area of the bound polymer to the core surface, and Ay the cross
section of the bound polymer, which leads to a dimensionless grafting density defined by %
which for densely grafted systems is % ~ 1. Our calculations for experimental systems use
L = (2leo+1e) cos(0/2)N, = 3.64N, for PEG, with N, equal to the number of C-O-O groups
along the chain, ., = 1.43 and [.. = 1.53 the C-O and C-C bond lengths, and # = 68° the
bond angle. We do not include PAA in the calculation of contour length, and we assume
maximum grafting density in our system, with v = 1. The calculations for our CG model
are straightforward, as the particles are built with maximum grafting density, N, is equal to
the number of CG beads in the P4 chain and L = 0.84N,, commensurate with the CG bond

length of 0.84.

Lattice Bridges

Characterizing BE in the lattice requires that we take advantage of lattice symmetry, in
order to obtain statistically relevant information. We can collect all the BE into a single
symmetric point for our lattice, by the method shown in Fig. S4, leading to the analysis in
Figures S5 to S11. These analysis methods show clearly consistent configurational behavior

regardless of €.
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Figure S4: Schematic showing the general process by which bridging events were projected
via lattice symmetry into a single NC representation. These projections allow for statistically
relevant slices along lines of interest.
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Figure S5: Collection of bridging events for various ayy, and probability densities of bridging
events along NN and 2NN lines in the fcc lattice, & = 5. The leftmost image reinforces the
level of statistics present when calculating locational probability densities, where in some
cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S6: Collection of bridging events for various ayy, and probability densities of bridging
events along NN and 2NN lines in the fcc lattice, & = 12. The leftmost image reinforces the
level of statistics present when calculating locational probability densities, where in some
cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S7: Collection of bridging events for various ayy, and probability densities of bridging
events along NN and 2NN lines in the fcc lattice, ¢ = 21. The leftmost image reinforces the
level of statistics present when calculating locational probability densities, where in some
cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S8: Collection of bridging events for various ayy, and probability densities of bridging
events along NN and 2NN lines in the fcc lattice, & = 35. The leftmost image reinforces the
level of statistics present when calculating locational probability densities, where in some
cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S9: Collection of bridging events for various ayy, and probability densities of bridging
events along NN and 2NN lines in the fcc lattice, £ = 41. The leftmost image reinforces the
level of statistics present when calculating locational probability densities, where in some
cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S10: Collection of bridging events for various ayy, and probability densities of bridg-
ing events along NN and 2NN lines in the fcc lattice, € = 91. The leftmost image reinforces
the level of statistics present when calculating locational probability densities, where in some

cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S11: Collection of bridging events for various ayy, and probability densities of bridg-
ing events along NN and 2NN lines in the fcc lattice, € = 115. The leftmost image reinforces
the level of statistics present when calculating locational probability densities, where in some

cases at large ayy, non-gaussian behavior is due to low statistics.
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Figure S12: These plots

show the bridge order (O) for given values of .
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Figure S13: These plots show the bridge order (O) for given values of &.
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Figure S14: These plots show the bridge order (O) for given values of &.
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Figure S15: These plots show the bridge order (O) for £ = 115.
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