Tunable Adhesion and Slip on a Bio-mimetic Sticky Soft Surface

Saumyadwip Bandyopadhyay, ^aSriram S M^b, Vartika Parihar, ^cSunando Das Gupta, ^{a,c}Rabibrata Mukherjee^{a,c*}, Suman Chakraborty^{a,d*}

^aAdvanced Technology Development Centre, Indian Institute of Technology Kharagpur, PIN- 721 302, West Bengal, India.

^bDepartment of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal- 575025, Karnataka, India.

^cDepartment of Chemical Engineering, Indian Institute of Technology Kharagpur, PIN- 721302, West Bengal, India.

^dDepartment of Mechanical Engineering, Indian Institute of Technology Kharagpur, PIN- 721302, West Bengal, India.

*Authors for cprrespondence. E-mail: <u>rabibrata@che.iitkgp.ac.in</u>, suman@mech.iitkgp.ac.in

Online Supporting Information

S.1Two-fluid Model for Apparent Slip

Fig. S1Variation of slip length with the oil film thickness for different viscosities of the oil film. Considering the above expression and noting that

$$b \propto (1 + \cos \theta)^{-2}$$
 67

we postulate:

$$b_{\theta-Slip_QR} = h_e \frac{\mu_{water}}{\mu_{oil}} (1 + \cos \theta)^{-2}$$

S.2Static and dynamic wetting characteristics

Fig S2. Contact angle subtended by a water droplet of 7μ l volume on rose petal based oleoplaned surfaces of different conditions

Fig S3. Variation of contact angle hysteresis for different rose petal based oleoplaned surfaces and in

Fig S4. variation of the corresponding critical tilting angle with different oil film thickness and different viscosity silicone oil coated rose petal based oleoplaned surfaces.

Reference

D. M. Huang, C. Sendner, D. Horinek, R. R. and Netz and L. Bocquet, Phys. Rev. Lett., 2008, 226101, 1–4.