Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Cross-Correlated Humidity Dependent Structural Evolution of Nafion Thin Film Confined

on Platinum Substrate

Udit N. Shrivastava^a, Kota Suetsugu^b, Shusaku Nagano^c, Helmut Fritzsche^d, Yuki Nagao^e, Kunal

Karan^{a,*}

a. Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada

b. Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa, Nagoya 464-8603, Japan.

c. Nagoya University Venture Business Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan

d. Canadian Nuclear Laboratories, Chalk River ON, Canda

e. School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

Figure S1. The difference in volume fraction estimated from ellipsometry and QCM at 25 °C for a sample cycled three times between 0% and 90% RH. Note mass of water on the bare Pt is deducted from QCM measurement.

a) Volume fraction estimation from direct mass uptake measured by QCM

$$\Delta m = \Delta F/CF \quad (1)$$
$$L_w = \Delta m/\rho_w \quad (2)$$
$$\Phi_w = \frac{L_w}{L} \quad (3)$$

Where, Δm is the water mass uptake measured from QCM in ng/cm², ΔF the frequency change upon water uptake in Hz, CF the conversion factor 56 Hz/ng, L_w and L the

thickness of water and dry ionomer layer in nm, ρ_w the density of water in g/cm³, and ϕ_w is the water volume fraction.

b) Volume fraction estimation from measurement of unidirectional film expansion in Z direction (Ellipsometry and NR).

$$\Phi_w = \frac{\Delta L}{L} / (4)$$

where, ΔL is change in thickness of the dry film in nm upon water uptake.

c) Volume fraction estimation from SLD measured by NR.

$$\varphi_{w}(z) = \frac{(SLD_{ion} - SLD_{ion + w}(z))}{(SLD_{ion} - SLD_{w})}$$
(5)
$$\varphi_{w} = \frac{\int \varphi_{w}(z) dz}{L}$$
(6)

where SLD_{ion} is the SLD of the dry ionomer, SLD_{ion+w} is the SLD of water containing ionomer, SLD_w is the SLD of water, and L is thickness of ionomer

Figure S2. Fitting of the GISAXS peaks using a Gaussian curve for a) Out-of-plane intensity b) Inplane intensity

d) Fitting of Reflectivity data using different models

Figure S3. Reflectivity data obtained for water containing 55 nm EW1100 film on Pt in 8% RH, 75% RH, and 84% RH at 25 °C fitted with a four-layer model.

Table S1: Comparisons of Figure of Merits (FOM) for data fitted with different # of layers

RH	Layers	FOM	Chi2	BIC
8%	1	0.07	5.62	807.18
75%	1	0.09	54.98	7372
	2	0.079	46.85	6165
	3	0.074	37.06	4796
	4	0.065	13.83	1819
	5	0.064		
84%	1	0.095	24.9	3371
	2	0.085	21.81	2910
	3	0.08	18.69	2463
	4	0.07	10.54	1411.5
	5	0.07		

$$FOM = \frac{1}{n - p} \sum_{n = 1}^{n} |\log(R) - \log(S)|$$

Where

where
$$chi2 = \frac{1}{n-p} \sum_{n=1}^{n} \left(\frac{R-S}{E}\right)^{2}$$
 and $BIC = (n-p).chi2 + pln(n)$

Where

n is the number of data points, p the number of parameters, R the experimental reflectivity, and S is the simulated reflectivity, and E is experimental error. BIC is Bayesion information criterion.

FOM is the figure of merit indicates the goodness of the fit.

4-layer model is chosen to represent the structure of water contained ionomer thin film because compare to 3-layer model FOM change is more than 10%. We find that adding another layer doesn't change FOM much (< 10%) therefore 4-layer model is most suitable.