Electronic Supporting Information for:

Interpolymer Complexes of Poly(Sulfonic Acid)s and Poly(Ethylene Oxide): An Unexpected Association

Liliana Maldonado, Gabriel Debais, Federico Davia, Lucila P. Méndez De Leo, Mario Tagliazucchi*

INQUIMAE-CONICET and DQIAQF, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina

* Email: <u>mario@qi.fcen.uba.ar</u> Webpage: <u>www.inquimae.fcen.uba.ar/softmaterials</u>

1. Assignments of FTIR bands for PSSA/PEO and Nafion/PEO

Table S1. Summary of absorption bands in the IRRAS spectra of PSSA/PEO LbL film in Figures 4a and 5a in the main text.

Wavenumber / cm ⁻¹	Polymer	Assignment	Refs.	
946	PEO	CH ₂ rocking	1	
1035	PSSA	symmetric stretching SO ₃ ⁻	2,3	
1100	PEO	symmetric and asymmetric COC stretching vibrations, CC stretch and CH ₂ rocking vibrations	4	
1130	PSSA	symmetric stretching of the SO ₂	2,3,5	
1184, 1213	PSSA	antisymmetric stretching SO ₃ -	2,3	
1352	PEO	wagging CH ₂	1,6	
1453	PEO	scissor/deformation CH ₂	6	
1650	PEO and PSSA	water bending mode	2,3,7	
2848, 2886, 2921	PEO and PSSA	C-H aliphatic str.	3	
3053	PSSA	C-H aromatic str.	3	
3053	PSSA/PEO IPC	O-H stretching in SO ₃ H/ether complex	This work	
3194	PSSA/PEO IPC	No definitive assignment, may be related to hydrated H₃O⁺	This work, 7,8	
3454 (broad)		water O-H stretching modes	9	

Wavenumber / cm ⁻¹	Polymer	Assignment	Ref
946	PEO	CH ₂ rocking	1
977	Nafion	C–O–C and C-F stretching modes	10
1065	Nafion	symmetric stretching SO ₃ -	2,3,10
1100	PEO	symmetric and asymmetric COC stretching vibrations, CC stretch and CH ₂ rocking vibrations	4
1163	Nafion	CF ₂ symmetric stretching	10
1258	Nafion	CF ₂ asymmetric stretching	10
1300	Nafion	CF ₂ backbone	10
1352	PEO	wagging CH ₂	1,6
1453	PEO	scissor/deformation CH ₂	6
1650 (broad)	PEO and PSSA	water bending mode	2,3,7,10
2886	PEO	C-H aliphatic str.	3
3065	Nafion/PEO IPC	O-H stretching in SO₃H/ether complex	This work
3183	Nafion/PEO IPC	No definitive assignment, may be related to hydrated $$\rm H_3O^{+}$$	This work, 7,8
3454 (broad)		water O-H stretching	9

Table S2. Summary of absorption bands in the IRRAS spectra of Nafion/PEO LbL film in Figures 4b andFigure 5b in the main text.

2. IRRAS Spectrum of PAA/PEO LbL Films

Figure S1. Infrared (IRRAS) spectra in the 3600-2400 cm⁻¹ (a) and 2100-900 cm⁻¹ (b) spectral regions of PAA/PEO LbL (same film as in Figure 3 in the main text) and dropcasted polymer films (PAA and PEO).

Wavenumber ∕ cm⁻¹	Polymer	Assignment	Ref
954	PEO	CH ₂ rocking	1
1100	PEO	symmetric and asymmetric COC stretching vibrations, CC stretch and CH ₂ rocking vibrations	4
1170	ΡΑΑ	C-O stretching	11
1252	PAA	C-O stretching	11
1347	PEO	wagging CH ₂	1,6
1452	PEO	scissor/deformation CH ₂	6
1452	PAA	scissor/deformation CH ₂	
1728	PAA	C=O stretching in COOH	4,12
2872 and 2946	PEO and PAA	C-H aliphatic str.	3,11
3218 (broad)	ΡΑΑ	O-H stretching in free and associated COOH	12
3454 (broad)		water O-H stretching O-H stretching in free COOH	9,12

Table S3. Summary of absorption bands in the IRRAS spectra of PAA/PEO LbL film in Figure S1.

3. Additional Information for Electronic Structure Calculations

Table S4. Energy of formation of hydrogen-bonded acid/ether complexes determined from electronic

 structure calculation of small-molecule analogs.

	B3LYP/aug-cc-pVDZ	MP2/6-311++G(d,p)	MP2/aug-cc-pVDZ
ΔE_{HB} / Hartree			
CH₃COOH…O(CH₃)₂	-0.01222	-0.01647	-0.01651
CH ₃ SO ₃ H…O(CH ₃) ₂	-0.01608	-0.02377	-0.02217
$C_6H_6SO_3H\cdots O(CH_3)_2$	-0.01503	-0.02530	-0.02715
$\Delta E_{HB} / kJ/mol$			
CH₃COOH…O(CH₃)₂	-32.07	-43.24	-43.32
$CH_3SO_3H\cdots O(CH_3)_2$	-42.21	-62.39	-58.19
$C_6H_6SO_3H\cdots O(CH_3)_2$	-39.45	-66.40	-71.26
$\Delta E_{HB} / k_{B}T (T = 298 \text{ K})$			
CH₃COOH…O(CH₃)₂	-12.94	-17.45	-17.49
CH ₃ SO ₃ H…O(CH ₃) ₂	-17.04	-25.18	-23.49
$C_6H_6SO_3H\cdots O(CH_3)_2$	-15.92	-26.80	-28.76

_		MP2/aug-cc-pVDZ	ZPE	Total
	ΔE_{HB} / Hartree			
	CH ₃ COOH…O(CH ₃) ₂	-0.01651	0.001833	-0.01467
	$CH_3SO_3H\cdots O(CH_3)_2$	-0.02217	0.001234	-0.02094
	$C_6H_6SO_3H\cdots O(CH_3)_2$	-0.02715	0.002643	-0.02451
_	∆Е _{нв} / kJ/mol			
	CH ₃ COOH…O(CH ₃) ₂	-43.32	4.81	-38.51
	$CH_3SO_3H\cdots O(CH_3)_2$	-58.19	3.24	-54.95
	$C_6H_6SO_3H\cdots O(CH_3)_2$	-71.26	6.93	-64.32
_				
	$\Delta E_{HB} / k_{B}T$ (T = 298 K)			
	$CH_3COOH \cdots O(CH_3)_2$	-17.49	1.94	-15.54
	$CH_3SO_3H\cdots O(CH_3)_2$	-23.49	1.31	-22.18
	$C_6H_6SO_3H\cdots O(CH_3)_2$	-28.76	2.80	-25.96

 Table S5. Correction of MP2/aug-cc-pVDZ energies with the zero-point energies.

4. Coupled Chemical Equilibria Model

We consider a simple model of coupled equilibria in order to estimate the effect of the formation of the hydrogen bond on the apparent acid-base equilibrium constant. Let as consider the following equilibria:

$$P - SO_{3}H \xleftarrow{\kappa_{a}} P - SO_{3}^{-} + H^{+}$$
(S1)

$$P - SO_3H + PEO \xrightarrow{\kappa_r} P - SO_3H \cdots PEO$$
(S2)

, where *P*- indicates the polymeric backbone. The corresponding equilibrium equations (assuming unitary activity coefficients and a homogeneous system) are:

$$Ka = \frac{\left[P - SO_3^{-}\right]\left[H^{+}\right]}{\left[P - SO_3H\right]}$$
(S3)

and,

$$K_{f} = \frac{\left[P - SO_{3}H \cdots PEO\right]}{\left[P - SO_{3}H\right]\left[PEO\right]}$$
(S4)

Let us now denote the fractions of $P-SO_3^-$ and $P-SO_3H\cdots PEO$ as f_c and f_b , respectively. This substitution allows to rewrite eqs. (S3) and (S4) as,

$$Ka = \frac{f_c \left[H^+\right]}{1 - f_c - f_b} \tag{S5}$$

and

$$K_f = \frac{f_b}{(1 - f_c - f_b)[PEO]}$$
(S6)

At this stage, for the sake of simplicity, we will assume that the concentration of monomers of PEO and the concentration of sulfonic acid (in all states) are both equal to c_0 . From stoichiometry considerations, the concentration of free PEO monomers, [PEO], is equal to the total concentration of free sulfonic acid monomers (both charged and uncharged), *i.e.* [PEO] = $c_0(1-f_b)$, therefore, eq. (S6) becomes:

$$K_{f} = \frac{f_{b}}{(1 - f_{c} - f_{b})(1 - f_{b})c_{0}}$$
(S7)

We are interested in determining the apparent pKa of the acid-base equilibrium reaction, pKa^{app}, which is the pH value for which $f_c = 0.5$. Replacing $f_c = 0.5$ and $[H^+] = Ka^{app}$ in equations (S5) and (S7) results in:

$$Ka = \frac{Ka^{app}}{1 - 2f_b}$$
(S8)

and,

$$K_{f} = \frac{f_{b}}{(0.5 - f_{b})(1 - f_{b})c_{0}}$$
(S9)

We rearrange eq. (S8) to,

$$pKa^{app} = pKa - \log_{10}(1 - 2f_b) \tag{S10}$$

The value of f_b required to obtain pK a^{app} from eq. (S10) can be determined from eq. (S9), which is a quadratic equation in f_b . Finding the physically meaningful root of this equation results in:

$$f_{b} = \frac{\left(\frac{3}{2} + \frac{1}{K_{f}c_{0}}\right) + \left[\left(\frac{3}{2} + \frac{1}{K_{f}c_{0}}\right)^{2} - 2\right]^{1/2}}{2}$$
(S11)

Figure S4 shows the predicted shift in pKa ($\Delta pKa = pKa^{app} - pKa$) and f_b as a function of the product $K_f \cdot c_0$. For $f_b > \sim 0.25$, the prediction is that ΔpKa increases by one unit every ten-fold increase of K_f . The threshold value, $f_b > 0.25$, is of the same order of magnitude as the range of $f_b = 0.1$ -0.5 measured by Granick and coworkers in hydrogen-bonded LbL films of PAA with PEO and PVPON.⁴

Figure S2. Shift in ΔpKa (blue curve, left axis) and fraction of associated acid groups (red curve, right axis) as a function of the product $K_{f} \cdot c_0$, where K_{f} is the formation constant of the hydrogen-bonded complex and c_0 is the concentration of monomers in the IPC.

5. Determination of Film Thickness with AFM

Figure S3: AFM topographic images (upper image in each panel) for LbL films on a gold substrate. The films were partially removed by scratching the surface with a gold wire. The lower plots in each panel show the height profiles that were used to determine the thicknesses of the films. The films correspond to those shown in Figure 3 in the main text and their thicknesses are: a. PSSA/PEO: (306 ± 15) nm, b. PAA/PEO: (535 ± 44) nm and c. Nafion/PEO: (1080 ± 80) nm.

6. Additional Turbidity Titration Experiments

Figure S4: Turbidity of PEO/PSSA mixtures (1:1 mixture of 10 mM PEO and 10 mM PSSA) measured by the extinction at 400 nm as a function of the solution pH without added salt (red line) and with 500 mM added NaCl (black line). The pH was adjusted with HCl 3 M.

Figure S5: Turbidity of a PEO/PAA mixture (1:1 mixture of 10 mM PEO and 10 mM PAA) measured by the extinction at 400 nm as a function of the solution pH. The pH was adjusted with HCl 3 M. The critical pH determined from this experiment is 3.65.

7. References

- 1 S. H. Jeon and T. Ree, J. Polym. Sci. Part Polym. Chem., 1988, 26, 1419–1428.
- 2 A. Krasovskii and K. Kalnin'sh, J. Appl. Spectrosc., 1977, 26, 745–749.
- 3 G. Socrates, *Infrared and Raman characteristic group frequencies: tables and charts*, John Wiley & Sons, 2004.
- 4 S. A. Sukhishvili and S. Granick, J. Am. Chem. Soc., 2000, **122**, 9550–9551.
- 5 S. Detoni and D. Hadzi, *Spectrochim. Acta*, 1956, **11**, 601–608.
- 6 L. Sim, S. Gan, C. Chan and R. Yahya, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2010, 76, 287–292.
- 7 D. S. Warren and A. J. McQuillan, J. Phys. Chem. B, 2008, **112**, 10535–10543.
- 8 R. Buzzoni, S. Bordiga, G. Ricchiardi, G. Spoto and A. Zecchina, J. Phys. Chem., 1995, 99, 11937–11951.
- 9 M. Falk, Can. J. Chem., 1980, 58, 1495–1501.
- 10 D. Kosseoglou, R. Kokkinofta and D. Sazou, J. Solid State Electrochem., 2011, 15, 2619–2631.
- 11 J. Dong, Y. Ozaki and K. Nakashima, J. Polym. Sci. Part B Polym. Phys., 1997, 35, 507–515.
- 12 X. Lu and R. Weiss, *Macromolecules*, 1995, **28**, 3022–3029.