Supporting Information

Molecular Motifs Encoding Self-Assembly for Peptide Fibers into Molecular Gels

Yaqi Lan,^a Muwen Lv,^a Shenglan Guo,^a Pedram Nasr,^b Vladimir Ladizansky,^c Raoul Vas,^c Maria G. Corradini,^d Tao Hou,^a Yong Cao,^a Saeed M. Ghazani,^b Alejarando Marnangoni^b and Michael A. Rogers *^b

^a. Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University,

Guangzhou, Guangdong, P.R. China.

^{b.} Department of Food Science, University of Guelph, Guelph, Ontario NIG 2W1, Canada.

^c Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

^d Arrell Food Institute, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.

*Corresponding author

Michael A. Rogers Department of Food Science, University of Guelph Guelph, Ontario, N1G2W1 <u>mroger09@uoguelph.ca</u>

ph: 519-8240-4120 ext 54327

Scanning Colorimetry (DSC)

Methods:

DSC8000 differential scanning calorimeter (DSC) (Perkin-Elmer, Waltham, MA, USA) was utilized to measure the phase transition of the gels. The DSC chamber was pre-cooled to 20 °C with a nitrogen flush (50ml/min). 6 to 10 mg of gel was sealed in stainless steel pans (Perkin-Elmer, Waltham, MA, USA) with built-in torque for improved seals. Samples were heated to 180 °C at 5 °C/min, then held isothermally for 10 min, and then were cooled down to 20 °C at 5 °C/min. GraphWare software Pyris 11.0 was used to integrate the transition peaks to determine the onset melting temperature.

Gelator No.	Center of solution sphere					Center of gel sphere				Center of precipitate sphere			
	$2\delta_d$	δ _p	δ_{h}	R	$2\delta_d$	δ_p	δ_{h}	R	$2\delta_d$	δ _p	δ_{h}	R	
L-LL	33.60	9.60	24.00	19.51	31.60	5.70	11.80	4.62	32.80	8.80	3.70	9.78	
_L -FF	35.40	13.70	17.90	8.65	32.80	8.70	11.50	5.61	31.10	8.00	21.15	22.62	
L-YY	36.80	9.75	17.30	12.40	31.39	13.17	23.98	18.50	33.10	1.55	2.85	4.10	
L-WW	35.20	11.70	23.80	19.33	NA	NA	NA	NA	30.86	7.86	6.43	10.15	
_D -FFF	36.10	7.80	8.20	3.95	32.10	15.75	14.65	8.97	31.10	8.00	21.15	22.62	
_D -FF	36.40	9.20	15.70	10.78	31.10	12.05	11.25	7.89	31.10	8.00	21.15	22.62	
L-LLL	36.40	9.20	15.65	10.78	NA	NA	NA	NA	31.10	8.00	21.15	22.62	
_L -FFF	36.38	9.21	15.65	10.78	31.10	12.05	11.25	7.89	31.10	8.00	21.15	22.62	
_L -YYY	35.20	11.70	23.80	19.30	NA	NA	NA	NA	31.90	2.59	3.54	4.56	
L-WWW	35.19	11.71	23.80	19.33	NA	NA	NA	NA	33.30	1.55	2.85	4.10	
C- _L -LL	35.90	11.80	9.43	4.68	34.70	7.30	13.10	13.44	31.30	8.23	21.06	22.62	
C- _L -FF	NA	NA	NA	NA	NA	NA	NA	NA	31.10	8.00	21.15	22.62	
C- _L -YY	35.90	11.80	9.43	4.68	31.61	11.10	29.34	13.90	32.29	5.65	12.94	14.22	
C- _L -WW	36.40	9.20	15.65	10.78	NA	NA	NA	NA	31.10	8.00	21.15	22.62	
C- _D -FF	NA	NA	NA	NA	NA	NA	NA	NA	31.10	8.00	21.15	22.62	

Table S1. Hansen coordinates $(MP_a^{1/2})$ for the center of the solution, gel and precipitate spheres, as well as the radius $(MP_a^{1/2})$ for each gelator sphere.

Figure S1. Analytical HPLC (A) and ESI-MS (B) of gelator $_L$ -LL.

Figure S2. Analytical HPLC (A) and ESI-MS (B) of gelator $_{\rm L}\text{-}FF.$

Figure S3. Analytical HPLC (A) and ESI-MS (B) of gelator L-YY.

Figure S4. Analytical HPLC (A) and ESI-MS (B) of gelator $_{\rm L}\text{-}WW.$

Figure S5. Analytical HPLC (A) and ESI-MS (B) of gelator $_L$ -LLL.

Figure S6. Analytical HPLC (A) and ESI-MS (B) of gelator $_{\rm L}\text{-}FFF.$

Figure S7. Analytical HPLC (A) and ESI-MS (B) of gelator $_L$ -YYY.

Figure S8. Analytical HPLC (A) and ESI-MS (B) of gelator $_{\rm L}\text{-}WWW.$

Figure S9. Analytical HPLC (A) and ESI-MS (B) of gelator C-_L-LL.

Figure S10. Analytical HPLC (A) and ESI-MS (B) of gelator C-_L-FF.

Figure S11. Analytical HPLC (A) and ESI-MS (B) of gelator C-_L-YY.

Figure S12. Analytical HPLC (A) and ESI-MS (B) of gelator C-_L-WW.

Figure S13: ¹H-NMR (600 MHz, DMSO- d_6) of _L-LL.

Figure S14: ¹H-NMR (600 MHz, DMSO- d_6) of _L-FF.

Figure S15: ¹H-NMR (600 MHz, DMSO- d_6) of _L-YY.

Figure S16: ¹H-NMR (600 MHz, DMSO- d_6) of _L-LLL.

Figure S17: ¹H-NMR (600 MHz, DMSO-*d*₆) of _L-FFF.

Figure S18: ¹H-NMR (600 MHz, DMSO- d_6) of c-_L-LL.

Figure S19: ¹H-NMR (600 MHz, DMSO- d_6) of c-_L-FF.

Figure S20: ¹H-NMR (600 MHz, DMSO- d_6) of c-_L-YY.

Figure S21: ¹H-NMR (600 MHz, DMSO- d_6) of c-_L-WW.