Supplementary Information for Frustration between two- and three-dimensional smectic ordering leads to a biaxial nematic phase

Dong Chen,^{a,b,c} David A. Coleman,^c Chenhui Zhu,^c Nattaporn Chattham,^{c,d} Frank Jenz,^{c,e} Xiaohong Cheng,^{f,g} Carsten Tschierske,^f Matthew A. Glaser,^c Joseph E. Maclennan,^c and Noel A. Clark^c

^aInstitute of Process Equipment, College of Energy Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, 310027, China

^bState Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Zheda Road No. 38, Hangzhou, 310027, China

^cDepartment of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309-0390, USA

^dDepartment of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand

eInstitute of Physical Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany

^fInstitute of Organic Chemistry, Martin-Luther-University, D-06108, Halle, Germany

^gDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Yunnan University, Kunming, Yunnan 650091, China

Figure S1: FFTEM images showing the character of fracture surfaces of a lamellar smectic phase with inplane modulation of a bent-core mesogen. (a) Chemical structure and phase sequence of a homologue of biphenyl-3,4'-diyl bis-(4'-alkoxybiphenyl-4-carboxylate) [1]. (b) FFTEM image of the smectic B1 banana phase, showing layer steps and layers with, periodic ordering in two-dimensions, magnified in (c).

Figure S2: FFTEM images showing the character of fracture surfaces of a well-ordered columnar phase. (a) Chemical structure and phase sequence of phasmidic indigo derivative with 2,3,4-tridodecyloxyphenyl substituents [2]. (b) FFTEM image of the columnar phase, showing two-dimensional, periodic ordering, magnified in (b). The columnar phase shows long-range ordered, periodic structures in two spatial dimensions.

Figure S3: Radial intensity profile in wave vector q of the Fourier transform scattering pattern of Figure 3e. The peak at about 1.19 nm⁻¹ corresponds to an average FFTEM stripe spacing of around 5 nm.

Figure S4: Intensity vs. azimuthal angle ϕ derived from the Fourier transform scattering pattern shown in Figure 3e. The broad peaks reflect the orientational anisotropy of the in-plane smectic layering.

Figure S5. Space-filling molecular model showing two CT2 molecules. The rod-like molecular cores form an antiparallel, fully intercalated pair, giving an in-plane periodicity of d = 20 Å.

References

[1] E. Tsai, J. M. Richardson, E. Korblova, M. Nakata, D. Chen, Y. Shen, R. Shao, N. A. Clark, and D. M. Walba, *Angew. Chem. Int. Ed.* **52**, 5254-5257 (2013).

[2] J. H. Porada and D. Blunk, J. Mater. Chem. 20, 2956-2958 (2010).