Electronic Supplimentary Information: Transport of probe particles in polymer network: effects of probe size, network rigidity and probe-polymer interaction

Praveen Kumar, Ligesh Theeyancheri, Subhasish Chaki and Rajarshi Chakrabarti*

Department of Chemistry, Indian Institute of Technology Bombay,

Mumbai, Powai 400076, E-mail: rajarshi@chem.iitb.ac.in

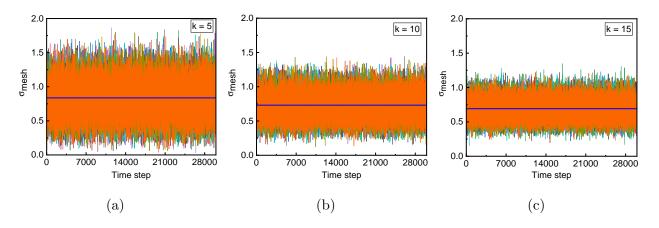


FIG. S1: Plots of the mesh size (σ_{mesh}) vs time step for different stiffness k = 5, 10, 15. The blue line represents the average mesh size.

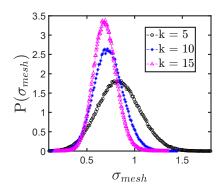


FIG. S2: Distribution $P(\sigma_{mesh})$ of the mesh size for different stiffness k = 5, 10, 15.

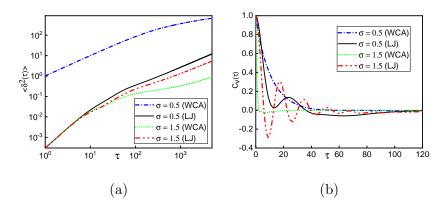


FIG. S3: Plots of $\langle \overline{\delta^2(\tau)} \rangle$ (a) and VACF $(C_v(\tau))$ (b) vs lag-time τ for WCA and LJ $(\epsilon = 2)$ with different size of the tracer particle $\sigma = 0.5, 1.5$ for stiffness k = 5.

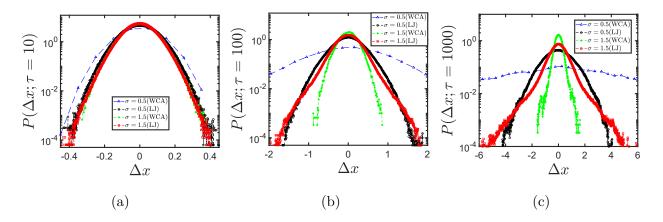


FIG. S4: Plots of the self part of the van-Hove functions in x, $P(\Delta x; \tau)$ for three chosen lag-times τ (100, 1000, 10000) for WCA and LJ ($\epsilon = 2$) with different size of the tracer particle $\sigma = 0.5, 1.5$ for stiffness k = 5.

File Name: Supplementary Movie 1

Description: Molecular dynamics simulation of probe particles with binding affinity $(\epsilon = 2)$ in polymer network (blue) of stiffness k = 5. The dynamics of the bigger tracer (red) with size $\sigma = 1.5$ becomes slower than the relatively smaller tracer (green) with size $\sigma = 0.5$.

File Name: Supplementary Movie 2

Description: Molecular dynamics simulation of probe particles with size $\sigma = 0.5$ in polymer network (blue) of stiffness k = 5. The probe particle (red) with higher binding affinity ($\epsilon = 5$) moves slowly as compared to the probe particle (green) with lower binding affinity ($\epsilon = 2$).

File Name: Supplementary Movie 3

Description: Molecular dynamics simulation of probe particle (green) with binding affinity $\epsilon = 2$ and $\sigma = 0.5$ in polymer network (blue) of stiffness k = 5. Here the tracer is less caged as compared to the case for k = 15.

File Name: Supplementary Movie 4

Description: Molecular dynamics simulation of probe particle (green) with binding affinity $\epsilon = 2$ and $\sigma = 0.5$ in polymer network (silver) of stiffness k = 15. Here the tracer is caged.