
Lattice Kinetic Monte-Carlo Method for Simulating Chromosomal

Dynamics and other (Non-)Equilibrium Bio-Assemblies

Christiaan A. Miermans and Chase P. Broedersz

Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, D-80333 München, Germany. Corresponding author:

CPB (c.broedersz@lmu.de). November 12, 2019

S1. Updating Time in Gillespie Algo-
rithms

Below, we present a derivation for updating time in Gillespie
simulations. Similar derivations can be found in e.g. [1, 2, 3,
4, 5, 6]. Consider two processes 1,2 with exponential waiting-
time distributions with rates k1, k2. The probability distri-
bution for an event to occur at time t is p(1; t) = k1e

−k1t,
so that the probability for any event to occur in the time-

interval [0,∆t〉 is P (1; ∆t) =
∫∆t

0
dtp(1; t) = 1− exp(−k1∆t).

The probability for either process 1 or 2 to have occurred in
the time-interval [0,∆t〉 is

P (1 ∨ 2; ∆t) = P (1̄ ∨ 2̄; ∆t)

= 1− P (1̄ ∨ 2̄; ∆t)

= 1− P (1̄; ∆t)P (2̄; ∆t),

where the overline is the “not-operator”. Thus, we find

P (1 ∨ 2∆t) = 1− e−k1∆te−k2∆t

= 1− e−(k1+k2)t,

i.e. the probability for either process 1 or 2 to occur is again
exponentially distributed, but now with rate K = k1 + k2.
The proof is analogous for more than two processes.

Given that we can sample uniformly random numbers
r ∈ [0, 1〉, how do we generate samples that are exponentially
distributed with rate K? The probability distribution for an
event to occur at time t is p(t) = Ke−Kt. To transform this
distribution to a distribution for p(r), we use the fact that
probability must be conserved in both the r or t coordinates;
this implies that p(t)|dt| = p(r)|dr|. Since p(r) = 1 on the
corresponding interval, we find p(t) = |dr/dt| or

r = ±
∫

dtp(t)

= ∓e−Kt,

but, since r must be positive, we find r = e−Kt. Inverting
this, we find t = −K−1 log r.

S2. Choosing the Maximal Interaction
Range for the Minimal Local Up-
date

The minimal local update (see main text) involves a set of
M coordinates that are updated after each LKMC iteration.

If a microscopic transition Ti displaces a particle at coor-
dinate r to a coordinate r′, then M = M1 ∪ M2, where
M1 = {r + v}∀|v|≤δr(r) and M2 = {r′ + v}∀|v|≤δr(r), i.e.
M contains all points within the maximal interaction ranges
δr(r), δr(r′) of the coordinates r, r′. The maximal interaction
ranges δr(r), δr(r′) are not necessarily equal to the interac-
tion range of the particle displaced by Ti, but rather by the
largest possible interaction range of all particles in the sys-
tem that are affected by Ti. In our slip-link model system for
example, a slip-link only ever displaces one lattice site, but
the crank-shaft move can displace a monomer by two lattice
sites; hence, δr = 1 if a particular move only affects slip-links
but δr = 2 if a monomer can be affected by the move.

Concretely, the maximal interaction ranges before and af-
ter the move are δr(r) = max{δrj · θ(|r − rj | ≤ δrj)} and
δr(r′) = max{δrj · θ(|r′ − rj | ≤ δrj)}, where θ(x) is the
three-dimensional Heaviside theta function, the rj are the
coordinates of all particles in the system and δrj their corre-
sponding interaction ranges. However, to avoid having to
compute the δr(r), δr(r′) after every transition Ti in this
costly manner, and for the sake of simplicity, we always use
δr = max{δrj}. In particular, for our slip-link model sys-
tem we have max{δrj} = 2 corresponding to the crank-shaft
move in the Verdier-Stockmayer move-set that we use for the
simulation of polymer dynamics (Figure 6a).

S3. Kinetics of Slip-Link Movement

1 Diffusion constant of slip-link with
single-DOF kinetics

Suppose the elastic slip-link is composed of two sides, A,B;
each side can move in two directions +,−. We consider a
slip-link with an elastic internal energy of extension, and
consider the spring constant so high that the slip-link will–
at most–be extended by one lattice site. With this as-
sumption, there are four possible ways of having a net dis-
placement after two Monte-Carlo moves, i.e. moves such
as A+B− are neglected. These four possible pathways are:
A+B+, B+A+, A−B−, B−A− (the ordering of the operators
denotes the ordering of the MC moves). There are four other
pathways that result in the same energy gain ∆E, namely
A+A−, A−A+, B+B−, B−B+.

Since there are four MC pathways that produce a net dis-
placement and four that do not, on average, we have to
perform twice two MC moves to achieve one displacement
`0–either to the left or to the right. The average wait-
ing time for each of these pathways at unit temperature is
T0 = τ0(1 + e∆E). To find the diffusion coefficient, we solve

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2019

〈r2〉 = 2Dt for D. As explained above, the dimer makes a
displacement of size `0 after at time t = 2T0. We thus find
`20 = 4DT0. In sum, the diffusion constant using single-DOF
kinetics is D = `20/[4τ0(1 + e∆E)].

2 Diffusion constant of slip-link with
single-DOF kinetics

Consider two particles α = a, b with position, velocity rα =
x̂xα + ŷyα,vα = ∂trα experiencing overdamped kinetics and
subject to a harmonic potential V (ra, rb). The Langevin
equations are γvα = −∇V (ra, rb) +ηα where γ is a damping
coefficient and ηα is delta-correlated noise, 〈ηα(t) · ηα(t′) =
2γkBTdδ(t− t′).

The forces on the particle due to this potential are fα =
−∇αV = ±k[x̂](xb − xa) + ŷ(yb − ya)] with the plus, minus
signs corresponding to respectively α = a, b. We thus find
fa = −fb, so that we can sum the two Langevin equations
together to find for the center-of-mass velocity

vCM =
1

2
(va + vb)

=
1

2γ
(ηa + ηb).

The total displacement of the center of mass is rCM =∫ t
0

dτvCM (τ), so the mean-squared-displacement is

〈rCM (t)2〉 =

∫ t

0

∫ t

0

dτdτ ′〈vCM (τ) · vCM (τ ′)〉

=
2

(2γ)2

∫ t

0

∫ t

0

dτdτ ′〈ηα(τ) · ηα(τ ′)〉

=
dkBT

γ
t.

Combined with the Einstein relation, γ = D/kBT [7], this
gives 〈r2

CM (t)〉 = 2dDCM t with DCM = D/2. Our stochas-
tic argument based on two independent oscillators that move
over a discrete lattice produces a slightly different value for
the center-of-mass diffusion coefficient D++, namely D++ =
D log 2 ≈ 0.69D (see main text).

3 Velocity of particle moving in potential
ramp

Consider a particle moving diffusively (microscopic attempt
rate k0) inside a potential ramp with a (dimensionless) poten-
tial energy gain of β∆EMH per step (Figure 1). We wish to
calculate the relationship between velocity 〈v〉 and the steep-
ness set by β∆EMH.

If we denote the probability of a forward, backward step
by respectively p+, p−, then the average velocity 〈v〉 is

〈v〉 = `〈k〉(p+ − p−), (S1)

where the probabilities in Metropolis-Hastings kinetics are de-
fined as p± = min(1, e∓β∆EMH) and where the average step-
ping rate is

〈k〉 =

∫
dk kp(k) = K, (S2)

where we used p(k) = K−1 exp(−k/K). The total rate de-
pends on ∆EMH as K = k0p− + k0p+, for which we can find
a closed expression using the p± as defined before:

K =k0(min(1, e−β∆EMH) + min(1, e+β∆EMH)) (S3)

=k0(1 + e−β|∆EMH|). (S4)

Fig. S1. Particle moving in a potential ramp ac-
cording to Metropolis-Hastings kinetics. Schemat-
ically indicated is the potential ramp with jump size
∆EMH per step. The microscopic attempt rate is k0,
with limits the maximum velocity towards the right, even
in the limit β∆EMH →∞ (Equation S7).

Combining the previous results, we find the average veloc-
ity to be

〈v〉 =`k0(1 + e−β|∆EMH|)
min(1, e−β∆EMH)−min(1, e+β∆EMH)

1 + e−β|∆EMH|

(S5)

=`k0

(
min(1, e−β∆EMH)−min(1, e+β∆EMH)

)
(S6)

=`k0sgn(∆EMH)(e−β|∆EMH| − 1). (S7)

We find that the maximum velocity in Metropolis-Hastings
kinetics is `k0, and is therefore fundamentally limited by the
microscopic attempt rate k0.

For small external driving β|∆EMH| � 1 we have
exp(−β∆EMH) ≈ 1 − β∆EMH. This gives 〈v〉 ≈
−sgn(∆EMH)`k0β|∆EMH| = −`k0β∆EMH. Furthermore, we
have for the diffusion coefficient D = k0`

2 and ∆EMH =
−φMH` with φMH the force φMH generated by the potential
ramp. We combine these last results to find

〈v〉 ≈ βφMHD, (S8)

Importantly, we find that Metropolis-Hastings kinetics is con-
sistent with the fluctuation-dissipation theorem, but only in
the limit of a potential ramp with small slope β|∆EMH| � 1.

4 Residence time of motor stalling

Assume that the motor has two possible states: ballistic
movement with velocity v and stalled motion at the end of
the polymer (position N/2). For the sake of simplicity, we
work in a regime where the motor movement attempt rate
is much higher than the monomer diffusion attempt rate k0.
This means that the motor velocity is rate-limited by poly-
mer dynamics. We have previously estimated (figure 8 in
[8]) that the motor velocity in such a regime is v ≈ C2k0

with C ≈ 3/16 the probability of two monomer bonds to be
aligned. Moreover, we measured the prior probability of a
motor slip-link to stall once it reaches the end of the polymer
to be p0 ≈ 0.2 for N = 200 (note that p0 may have an implicit
N−dependency).

2

10−6 10−5 10−4 10−3 10−2

slip-link switching rate kswitch

0.0

0.2

0.4

0.6

0.8

1.0
re

la
ti

ve
w

ei
gh

t
of

ar
re

st
ed

st
at

es
p
(K

({
i e
})

=
0
)

Fig. S2. The relative time that a motor slip-link
spends in a stalled position depends on a balance
between the direction switching time and the mo-
tor velocity. Shown are the fractional time spent in a
stalled state (black circles) for various rates kswitch of
the motor-slip switching its direction of movement. A
stalled state is defined as K(ie) = 0, where K(ie) is the
total rate of the loop (sites ie) that surrounds a slip-link.
Dashed line: mean-field approximation (S9).

With the above assumptions, the time spent in the ballistic
regime is 〈tballistic〉 ≈ N/v. Once the motor slip-link stalls,
the time spent in that stalled position is ≈ 1/kswitch, so the
average time spent in a stalled state is 〈tstalled〉 ≈ p0/kswitch.
An estimate for the probability of a motor to be in a stalled
state θ is then simply the weighted average of these two life-
times:

θ ≈ 〈tstalled〉
〈tballistic〉+ 〈tstalled〉

≈ p0v

p0v + kswitchN
. (S9)

This estimate fits the data quite well, except for very small
kswitch (Figure 2). The systematic deviation stems from the
way that we prepare the system: The motor slip-link is bound
to the polymer without any extruded loop. This slightly bi-
ases the data.

5 Detailed Balance of Loop Kinetics

For a stochastic variable to obey detailed detailed bal-
ance, we must have p(∆, τ ; ∆′, 0) = p(∆′, τ ; ∆, 0)∀τ , where
p(∆, τ ; ∆′, 0) is the joint probability density of transitioning
from ∆′ into ∆ over a time-interval τ .[9] Specifically, for our
slip-link model system we monitor the loop-size ∆(τ) trapped
by a slip-link (Figure 3a). We collected statistics of loop-sizes
∆ = 1 and ∆ = 3 (Figure 3b) and generated histograms of
p(1, τ ; 3, 0), p(3, τ ; τ, 0). As can be seen in Figure 3c, these
distributions match within statistical error, indicating that
detailed balance is obeyed.

S4. Linear Response Theory

We consider a linear polymer with end-to-end distance pro-
jected along the z−axis R. In equilibrium, we can define
a partition function conditioned on end-to-end distance R,
which in turn defines a free energy FR. Using this free en-
ergy, we will now compute the force-extension relation for
small externally applied forces (along the z−axis) f .

detailed
balance

(a)

(b)

(c)

Fig. S 3. Coarse-grained variables can be used
to verify that our LKMC satisfies detailed bal-
ance in thermal equilibrium. (a) We monitor the
size ∆ of a DNA loop trapped by a slip-link. (b) We
collected statistics of loop-sizes ∆ = 1 and ∆ = 3. (c)
Detailed balance is obeyed if p(1, τ ; 3, 0) = p(3, τ ; 1, 0)
for all τ , which is indeed the case for our LKMC data
within one standard deviation (blue and green curves).
A lower slip-link diffusion attempt rate k0 (compare up-
per and lower curves) simply increases the decorrelation
time. For large times, the steady-state distributions sat-
isfy p(∆, τ ; ∆′, 0) → p(s)(∆)p(s)(∆′) (dashed line) since
the system is characterized by a finite amount of memory.

The conditional free energy satisfies βFR = logQR. The
conditional probability distribution can be found from QR as
p(R) = e−βFR/QR, so ∂Rp(R) = −β∂RFR · p(R). If we now
assume p(R) is Gaussian distributed in R in the unperturbed
ensemble, we find β∂RFR = R/〈R2〉. Since f = 〈∂RFR〉,
βf = 〈R〉/〈R2〉, where 〈R2〉 is the unperturbed variance.
After plugging in 〈R2〉 = `20N

2ν , we have an explicit rela-
tion between f, 〈R〉. For more information on the out-of-
equilibrium response of polymers, we refer to the existing
literature [10, 11].

We assumed that R is Gaussian distributed in the un-
perturbed case. This assumption is not always valid. To
have linear response between the conjugate variables f,R
for small R, we must have FR = a + bR2 + O(R)3. From
our above calcuation, we then see that this implies that
p(R) ∼ exp(cR2 + O(R)3). Normalization then sets a, b, c
so that p(R) is a Gaussian. In sum, linear response between
f,R implies that FR is harmonic for small f , which in turn
implies that p(R) is Gaussian for small R.

S5. Additional Checks on Polymer Dy-
namics

1 Rotational Invariance

The particles in our LKMC live on a lattice, thereby strictly
speaking introducing a breaking of rotational symmetry. In
order for the lattice simulation to simulate dynamics of an
off-latice system (e.g. a polymer), the breaking of rotational
symmetry should be negligible in the thermodynamic limit.

To test whether angular symmetry is broken, we applied a
force along the z−axis to both ends of a linear polymer (end-
to-end vector R) and measured the azimuthal angle θ defined
implicitly as tan θ = (R · ŷ)/(R · x̂). Indeed, we find that the
histogram of θ is closely matched by a uniform distribution

3

Fig. S4. Our LKMC obeys rotational invariance.
We measured the azimuthal angle θ as indicated in the
figure. Data was collected for polymer length Nm =
12 . . . 192 and monomer overlap energy J = 0 . . . 20 and
generated individual histograms for each parameter set.
All histograms were then combined (blue), and the aver-
age histogram of all parameter sets was computed (black,
error bars: standard deviation).

(Figure 4), indicating that rotational symmetry is not broken
by the lattice geometry.

2 Dependence of Polymer Relaxation
Time-Scale on External Force

Linear response theory assumes that the timescales of regres-
sion of spontaneous and forced fluctuations are identical close
to equilibrium, also known as Onsager’s regression hypothesis
[7]. This implies that the time-scale of relaxation from out-
of-equilibrium back to equilibrium should be independent of
the applied force f for small forces. Thus, if the total rate of
the system is denoted K =

∑
i ki, this means that K should

not depend on f . We already verified that our LKMC satis-
fies the fluctuation-dissipation theorem, but we now wish to
verify this independence of K on f in a more direct way.

We applied a force along the z−axis to linear polymers
of length N and with monomer overlap energy J . The di-
mensionless force is f̃ = β|f |`0Nν with ν the fractal scaling
exponent of the polymer. For very small (N . 16) polymers,

there is a moderate depedency of K on f̃ , but for N & 16, K

is no longer dependent on f̃ (Figure 5). This establishes that
the dynamic regression of fluctuations close-to-equilibrium is
identical to that in equilibrium.

3 Rouse-Like Dynamics of Self-Avoiding
Chains

We assume an overdamped limit, so that we have for the hy-
drodynamic force f = ζNv onto a polymer of lengthN moving
at a velocity v, where the friction coefficient of a chain of size
N by virtue of extensivity obeys ζN ≈ ζ1N . Combined with
the Einstein relation, this gives DN = D1/N , where DN , D1

are respectively the polymer and monomer diffusion coeffi-
cients. Thus, the quantity N〈RCM (t)2〉 should be indepen-
dent of N , which is indeed the case for our LKMC (Figure 6).

Dynamics of circular self-avoiding polymers with local ki-
netics display Rouse dynamics with adapted static and dy-

0.0

0.5

1.0

1.5

K
/N

J = 0
16.0

24.0

32.0

48.0

64.0

80.0

100.0

120.0

0.0

0.5

1.0

1.5

K
/N

J = 2
16.0

24.0

32.0

48.0

64.0

80.0

100.0

120.0

0 1 2 3 4 5

f̃

0.0

0.5

1.0

1.5

K
/N

J = 4
16.0

24.0

32.0

48.0

64.0

80.0

100.0

120.0

Fig. S5. Regression of fluctuations is indepen-
dent of the applied force close to equilibrium. We
applied a constant force f along the z−axis to a linear
polymer of length N (indicated in legend) and measured
the total rate K of the polymer dynamics. The dimen-
sionless force is f̃ = β|f |`0Nν . Horizontal lines were
added at f̃ = 0 for the maximum value of N used for
each J to indicate that K/N does not vary with f̃ .

C
M

C
M

KMC time

Ce
nt

er
-o

f-
m

as
s

M
SD

Fig. S6. Diffusion of the center of mass of a cir-
cular polymer. Center of mass RCM for polymers of
various sizes. Inset: Collapse onto universal master curve
by a rescaling DN = D1/N .

namic scaling exponents as compared to dynamics of phan-
tom chains. We already verified that the monomeric diffusion
is in agreement with the these Rouse-like dynamics (see main
text and Figure 7). We will now verify that not only a sin-
gle monomer, but also subchains of the self-avoiding walk
displays the correct dynamic scaling exponents. The inter-
monomeric vector r∆ of a subchain of size ∆ changes over
time as MSD∆(t) = 〈∆r∆(t)2〉 ∼ N2ν and where the time-
dependency has a longest relaxation time τN ∼ N1+2ν [12].
For times t� τN , we simply recover the static subchain scal-
ing 〈r2

∆〉 ∼ N2ν . Thus, a plot of 〈∆r(t)2〉/N2ν versus t/τN
should approximately collapse all data onto a single master-
curve, which is indeed the case for our LKMC (Figure 7).

4

(a)

Crankshaft move

(b)

Fig. S7. Rouse dynamics of mean-squared dis-
placement of the intermonomeric distance in a
circular polymer. (a) Schematic of quantity that we
measure. (b) Intermonomeric distance dynamics for var-
ious chain sizes ∆. Inset: Data collapse onto a single
master-curve by a rescaling 〈∆r(t)2〉/N2ν versus t/τN ,
where τN is the whole-polymer relaxation time [13].

4 Statics of Chains with Partial Self-
Avoidance

extract sub-chain
of size ∆

Fig. S8. Ensemble-averaged polymer statistics of
polymers with partial self-avoidance are in agree-
ment with theory. Two polymers were simulated: a
phantom chain (blue) and a polymer with monomer over-
lap energy J = 8. The radius of gyration scaling of sub-
chains within such the phantom and self-avoiding walk
obey a scaling Rg ∼ ∆ν with respectively ν = 1/2 and
ν ≈ 0.588.

We implemented monomer-monomer interactions by al-
lowing for multiple monomers on the same lattice point
ri. Monomer overlap was penalized with the Hamiltonian
H = 1

2

∑
i,j Jδrirj , where δa,b is a Kronecker delta. For

J = 0, we recover a random walk, whereas for any J > 0,
the polymer should self-avoiding walk statistics [14], as veri-
fied by our simulations (Figure 8).

References

[1] Arthur F. Voter. INTRODUCTION TO THE KINETIC
MONTE CARLO METHOD. In Radiation Effects in

Solids, pages 1–23. Springer Netherlands, Dordrecht,
2007.

[2] Peter Kratzer. Monte carlo and kinetic monte carlo
methods – a tutorial. Technical report, 2009.

[3] Daniel T. Gillespie. Exact stochastic simulation of cou-
pled chemical reactions. The Journal of Physical Chem-
istry, 81(25):2340–2361, 1977.

[4] Daniel T Gillespie. A general method for numeri-
cally simulating the stochastic time evolution of coupled
chemical reactions. Journal of Computational Physics,
22(4):403 – 434, 1976.

[5] Kristen A. Fichthorn and W. H. Weinberg. Theoretical
foundations of dynamical Monte Carlo simulations. The
Journal of Chemical Physics, 95(2):1090–1096, jul 1991.

[6] Daniel T. Gillespie, Andreas Hellander, and Linda R.
Petzold. Perspective: Stochastic algorithms for chem-
ical kinetics. The Journal of Chemical Physics,
138(17):170901, 2013.

[7] L. E. Reichl. A Modern Course in Statistical Physics,
volume 67. Wiley, 4 edition, 2016.

[8] Christiaan A. Miermans and Chase P. Broedersz. Bacte-
rial chromosome organization by collective dynamics of
SMC condensins. Journal of The Royal Society Interface,
15(147):20180495, oct 2018.

[9] Crispin Gardiner. Stochastic Methods: A Handbook for
the Natural and Social Sciences. Springer, Berlin, 2009.

[10] Michael Rubinstein and Ralph H. Colby. Polymer
Physics. Oxford University Press, 2003.

[11] M. Doi and S. F. Edwards. The Theory of Polymer Dy-
namics. Clarendon Press, Oxford, 1986.

[12] Debabrata Panja and Gerard T Barkema. Passage Times
for Polymer Translocation Pulled through a Narrow
Pore. Biophysical Journal, 94, 2008.

[13] Debabrata Panja and Gerard T. Barkema. Rouse Modes
of Self-avoiding Flexible Polymers. The Journal of
Chemical Physics, 131:154903, aug 2009.

[14] Somendra M Bhattacharjee, Achille Giacometti, and
Amos Maritan. Flory theory for Polymers. Journal of
Physics: Condensed Matter, 25:503101, 2013.

5

S6. Implementation Details

RateCatalog stores all possible transitions in the Kinetic Monte-Carlo algorithm. This is done by using an unordered map, a data-
structure with a key (that uniquely defines a transition) and a value (we use the result of the transition as the value).

class RateCatalog

// variables

unordered_map catalog

// Unordered map variable that is the actual rate catalog.

// Key to the map: (move_type, position, direction),

// where "position" is an identifier that specifies on

// which particle the move is to be performed

// and "direction" specifies in which direction (up, down, etc.)

// the move is to be performed.

bool isStored(key)

return true if key is in the rate catalog

void remove(key)

removes key from rate catalog

Transformer performs most of the work in our LKMC. It contains methods to add transitions for a given particle to the rate catalog,
remove tansitions, and perform transitions (including the necessary updating of the microstate). A member variable of the class is
system, which contains the details of the microstate. Another member variable is rate catalog, which contains details about the
possible transitions.

class Transformer

// variables

float total_rate = 0

unordered_map rate_catalog

float time = 0

System system

void initiate()

// instantiates the rate catalog for the very first KMC step

loop over all particles with particle ID = site

addMoves(site)

void addMoves(site)

// adds all transitions at particle ID = site

loop over all move types

if move type has a rate > 0

loop over all possible moves of this type at this site

X = compute result of move

if move_result != null // checks whether move is allowed

k = computeMoveRate(X)

insert (X,k) in rate catalog

total_rate += k

void removeMoves(site)

// remvoes all transitions at particle ID = site

affected_moves = getMoves(site)

for key in affected_moves

(X, k) = rate_catalog[key]

total_rate -= k

rate_catalog.remove(key)

void removeMoves(coord)

// removes all transitions at a 3D-coordinate on the lattice

site = lattice[coord]

removeMoves(site)

void addMoves(coord)

// adds all transitions at a 3D-coordinate on the lattice

site = lattice[coord]

addMoves(site)

vector<key> getMoves(site)

// returns all transitions at particle ID = site

result = {} // empty container

for key in rate_catalog // loop over all KMC moves

if key.position == site

6

result = {result, key}

return result

key selectMove()

// selects move using tower sampling

r = uniformly sampled number in [0, 1>

R = total_rate * r

cum = 0

for key in rate_catalog// loop over all KMC moves

rate = key.rate

if (cum <= R) and (R < cum + rate)

return key

else

cum += rate

void doMove()

// performs move and updates state of the system

r = uniformly sampled number in [0, 1>

delta_t = - log(r) / total_rate // sample exponentially distributed random number

time += delta_t

key = selectMove()

move_class = key.move_type // instance of an overload of BaseMoveClass

move_result = rate_catalog[key].result // returns all information about transition

aff_coords = move_class.computeAffectedCoordinates(move_result.coordinate)

for coord in aff_coords

removeMoves(coord)

move_class.effectMove(result)

for coord in aff_coords

addMoves(coord)

System is a class with the details of the microstate and methods to manipulate the microstate, i.e. where the particles are, methods
to displace particles, etc.

class System // contains all details of the microstate

// variables

parameters // example {{"n_monomers", 100}, ... }

coordinates = {coord_1, coord_2, ...}

lattice

bool isOccupied(coord)

return true if lattice[coord] is occupied

bool areNeighboring(coord_1, coord_2)

return (coord_2 - coord_1).euclideanNorm == 1

bool areOverlapping(coord_1, coord_2)

return coord_2 == coord_1

void moveMonomer(site, new_coord)

old_coord = lattice[

lattice.move(site, old_coord, new_coord)

coordinates[site] = new_coord

vector<int> getAllNeighbors(site) // returns all occupied particles neighboring to particle ID = site

X = coordinates[site]

vector<int> result = {}

for direction in {-1,+1}

for j in 0...dimension

e_ij = direction * e_j // e_j[j]=1, e_j[k!=j]=0

if isOccupied(X+e_ij)

result = {result, lattice[X+e_ij]

return result

We created a virtual class called BaseMoveClass that can be overloaded by a specific implementation of a transition. Such a transition
will have the same methods as this virtual class, but with details that depend on the type of move. An example are the classes for the
Verdier–Stockmayer move-set [11] that displace one or two monomers. We have additional overloads of this class for slip-link diffusion,
binding and unbinding, etc.

Most of the physics is contained in the method computeEnergyDifference, which returns a floating point number that corresponds
to ∆E = H(ω′)−H(ω), where H(ω) is the Hamiltonian before the transition and H(ω′) is the Hamiltonian after it. For a polymer with

7

self-overlap we considered the Hamiltonian H = 1
2
J
∑
i,j δri,rj , where the sum runs over all pairs of monomers and J is the monomer

overlap energy. Another example would be the Hamiltonian for a semiflexible polymer: H = 1/2K
∑
i(ti+1 − ti)

2, where ti = ri− ri+1

is a tangent vector and K is a bending rigidity.

class BaseMoveClass (virtual class, not strictly necessary, but useful for making sure overloaded classes have

all the necessary methods)

// variables

attempt_rate

virtual vector<coord> computeAffectedCoordinates(move_result)

// returns all coordinates possibly affected by the transition using the ’minimal local update’

virtual vector<move_selection> computeMoveSelections(site)

// returns all possible transitions that can be performed on particle with ID = site

virtual move_result computeMoveResult(move_selection)

// returns the result of the transition "move_selection"

virtual void effectMove(move_result)

// performs the transition, changing the lattice, updating coordinates, etc.

double computeMoveRate(move_result)

// returns the rate of the transiton based on Metropolis-Hastings kinetics

delta_E = computeEnergyDifference(move_result)

if delta_E < 0

return attempt_rate

else

return attempt_rate * exp(- delta_E)

virtual float computeEnergyDifference(move_result)

// returns energy difference of the transition

8

	Updating Time in Gillespie Algorithms
	Choosing the Maximal Interaction Range for the Minimal Local Update
	Kinetics of Slip-Link Movement
	Diffusion constant of slip-link with single-DOF kinetics
	Diffusion constant of slip-link with single-DOF kinetics
	Velocity of particle moving in potential ramp
	Residence time of motor stalling
	Detailed Balance of Loop Kinetics

	Linear Response Theory
	Additional Checks on Polymer Dynamics
	Rotational Invariance
	Dependence of Polymer Relaxation Time-Scale on External Force
	Rouse-Like Dynamics of Self-Avoiding Chains
	Statics of Chains with Partial Self-Avoidance

	Implementation Details

