1

-Supporting information-Compression-induced anti-nematic order in glassy and semicrystalline polymers Sara Jabbari-Farouji and Damien Vandembroucq

Generation and characterization of polymer configurations

The large-scale melt samples are obtained from replications of the equilibrated melt samples generated in a cubic box with an initial length L_0 with final dimensions $(L_x, L_y, L_z) = (n_x L_0, n_y L_0, n_z L_0)$. We have chosen L_0 to be at least four times the radius of gyration of polymers to avoid spatial separation of long chains due to wrapping of coordinates in a periodic box. The information regarding the box size of initial melt configurations and the the replicated samples are given in the Table S1. The large-scale melt samples are subsequently cooled down to T = 0.2at cooling-rates $10^{-6} \tau^{-1}$ and $10^{-3} \tau^{-1}$ to obtain semicrystalline and glassy configurations, respectively. The gyration radii of polymers in the melts state T = 1 and in the semicrystalline and glassy states at T = 0.2 are also reported in the Table S1.

Figure S1: Volume per monomer v as a function of T for different chain lengths $5 \le N \le 1000$ obtained at constant cooling-rates a) $\dot{T} = -10^{-6}$, τ^{-1} and b) $\dot{T} = -10^{-3} \tau^{-1}$, respectively. Panels c) and d) show the crystallization temperature T_c and the glass transition temperature T_g versus N, respectively. The solid lines show fits to the Flory-Fox equation [2].

For the slower cooling rate, we observe crystallization characterized by a drastic drop of volume per monomer v drops drastically. We define the crystallization temperature T_c as the temperature that marks the onset of the abrupt drop of v upon cooling, see Fig. S1 (a). For the rapid quench of $\dot{T} = -10^{-3} \tau^{-1}$, the volume changes with T are less abrupt, see Fig. S1 (b). Polymers retain their amorphous configurations and undergo a glass transition. We define glass transition temperature T_g as the inflection point of the v - T curve for which its slope changes. Figures S1(c) and S1 (d) present the extracted values of T_c and T_g versus N. Both T_c and T_g increase with N, and

N	n_{c0}	R_g/σ	L_0	n_c	L_x	L_y	L_z	R_g/σ	R_g/σ	Φ_c	$L_{\rm crys}/\sigma$	$N_{\rm tie}$
		melt		replicated	replicated	replicated	replicated	crys	glass			
5	2000	0.615	16.9	128000	67.6	67.6	67.6	0.70	0.68	0.5	18.8	0
20	1000	1.79	20.6	27000	61.8	61.8	61.8	2.78	1.94	0.75	47.9	5.4
50	1000	3.17	27.8	18000	83.4	83.4	55.6	4.56	3.26	0.6	37.3	10
300	300	8.25	33.7	3600	67.4	67.4	101.1	9.11	8.10	0.43	15.4	21
1000	500	15.11	59.6	2000	119.2	119.2	59.6	15.45	14.90	0.36	14.3	27

Table S1: Summary of polymer melt configurations used in the simulations. N is the number of monomers in a chain, n_{c0} the number of chains used for the melt equilibration and n_c is the number of chains in the replicated melt samples that are further cooled to obtain glassy and semicrystalline polymers. L_x , L_y and L_z represent the dimensions of replicated box. We also report the value of average gyration radii $R_g = \sqrt{\langle R_g^2 \rangle}$ and the average linear dimension of crystalline domains L_{crys} and average size of tie chains N_{tie} , *i.e.* the number of monomers in amorphous strands connecting two distinct crystalline domains.

their dependence is well described by the phenomenological Flory-Fox equation [2] of the form $T_{c,g} = T_{c,g}^{\infty} - K_{c,g}/N$. We find $T_c^{\infty} = 0.915 \pm 0.005$ and $K_c = 1.34 \pm 0.06$ for the semicrystalline polymers and $T_g^{\infty} = 0.567 \pm 0.005$ and $K_g = 0.90 \pm 0.02$ for the glassy polymers. The observed N-dependence of T_c and T_g is well-known and is related to the effects of chain ends on interfacial energies and free volume [2].

To characterize the crystallites, we use the notion of crystalline domains which are defined as a set of spatially connected regions with the same orientation [3]. To identify the crystalline domains, we divide the box into cells of size about 2σ and we compute the nematic tensor $Q_{\alpha\beta} = 1/N \sum_i (3/2b_{\alpha}^i b_{\beta}^i - 1/2\delta_{\alpha\beta})$ of unit bond vectors of polymers b^i within each cell. The largest eigenvalue and the corresponding eigenvector of the nematic tensor determine the local order parameter S_{loc} and the preferred orientation of bonds, *i.e.* director $\hat{\mathbf{u}}$ in each cell. The volume fraction of cells with $S_{\text{loc}} > 0.8$ defines the degree of crystallinity Φ_C also included in Table S1. We perform a cluster analysis [4] by merging two neighbouring cells if they are both crystalline and their directors share the same orientation within the threshold $\hat{\mathbf{u}}_i \cdot \hat{\mathbf{u}}_j \ge 0.97$. From the volume distribution of crystallites, we determine the average volume of crystalline domains $\langle V_{\text{domain}} \rangle$ and hence their average linear dimension as $L_{\text{crys}} = \langle V_{\text{domain}} \rangle^{1/3}$. Characterization of the crystalline domains allows us to directly identify tie chains as the chain segments connecting them [5]. The average length of tie-chains N_{tie} are also given in Table S1.

Volume changes during the tensile and compressive deformation

Figure S2: The ratio of sample volumes V relative to their undeformed volume V_0 against strain magnitude from uniaxial compression (solid lines) and tensile (dashed lines) deformation for (a) glassy and (b) semicrystalline polymers with chain lengths N = 5, 20, 50, 300 and 1000 as given in the legends.

Stress-strain curves shifted by flow stress

Figure S3. The stress response of (a) glassy and (b) semicrystalline polymers shifted by their corresponding flow stress values Σ_f under uniaxial compression (solid lines) and tensile (dashed lines) deformation for different chain lengths N = 5, 20, 50, 300 and 1000 as given in the legends.

Conformational changes of semicrystalline polymers of chain length N = 50 under deformation

Considering that the entanglement length of polymers of CG-PVA model is $N_e \approx 40$ and the average stem length of long semicrystalline polymers is about 30, the polymeric samples of N = 50 lie in the crossover region from unentangled to entangled regimes and also from a fully extended to a chain-folded regime with several folds. The intrachain bond-bond orientational correlation functions of fully extended short chains N < 30 are always positive whereas those of longer chains with several folds exhibit a minimum around the average length of folds (stem length), see Fig. 3 in the main article. The undeformed semicrystalline polymers of N = 50 are at the intermediate regime, where the chains make only one fold at most, see Fig. S4. Hence, their intrachain bond-bond orientational correlation functions become negative for a range of curvilinear distances $n \ge 20$. This feature persists even for the deformed semicrystalline samples as presented in Fig. S5.

Figure S4. Snapshots of conformations of semicrystalline polymers N = 50 under compression $\epsilon = -1.6$, undeformed $\epsilon = 0$ and under tension $\epsilon = 1.6$.

Figure S5. Evolution of anisotropic intrachain bond-bond orientational correlation functions against the curvilinear distance n along chain backbones at different tensile and compressive strain magnitudes ε for glassy (a and b) and semicrystalline polymers (c and d) with chain length N = 50. The dashed lines depict the intrachain correlations parallel to the deformation axis $S^{||}(n) \equiv S^{y}(n)$ and the solid lines correspond to the average intrachain correlations in the perpendicular directions $S^{\perp}(n) \equiv (S^{x}(n) + S^{z}(n))/2$.

Changes of crystallinity degree with strain

We present the evolution of crystallinity degree Φ_c as a function of strain value for both compressive (negative strains) and tensile (positive strains) deformation modes. First, we note that Φ_c of undeformed samples is a non-monotonic function of chain lengths. It increase with N for short unentangled chains due to the reduction of interfacial free energy whereas it decreases with N upon entanglement of chains for $N > N_e$ where $N_e \approx 40$. Nonetheless, we observe a general trend for changes of Φ_c with strain. Under tension, Φ_c initially exhibits a small decrease due to reorientation and fragmentation of crystallites [6] and then increases as a result of chain alignment with the deformation axis. On the contrary, compression-induced anti-nematic ordering of the bonds, leads to reduction of Φ_c . This is particularly remarkable for long chains N = 300 and 1000 where the Φ_c approaches zero at large compressive strains demonstrating a complete destruction of crystalline order.

Figure S6. The evolution of crystallinity degree Φ_c as a function of strain for different chain lengths N as shown in the legend.

- [1] Meyer, H.; Müller-Plathe, F. J. Chem. Phys. 2001, 115, 7807.
- [2] T. G. Fox and P. J. Flory, Journal of Applied Physics 1950, 21, 581.
- [3] Luo, C.; Sommer, J.-U. J. Polym. Sci., Part B: Polym. Phys. 2010,48, 2222-2232.
- [4] S. Jabbari-Farouji, J. Rottler, O. Lame, A. Makke, M. Perez and J. L. Barrat, Journal of Physics: Condensed Matter, 2015, 27, 194131.
- [5] S. Jabbari-Farouji, O. Lame, M. Perez, J. Rottler and J.-L. Barrat, Phys. Rev. Lett., 2017, 118, 217802.
- [6] S. Jabbari-Farouji, J. Rottler, O. Lame, A. Makke, M. Perez and J. L. Barrat, ACS Macro Letters, 2015, 4, 147–151.