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1 Calculation of P(s) and R(s)
To calculate P(s) we counted Ni - the number of beads, which have less distance to the i-th bead, than cutoff radius = 1.5, and then
averaged Ni over all measurements in a chain:

P(s) =
1

N− s

N−s

∑
i=1

Ni(t0) (Eq. S1)

In R(s) we calculated average spatial distance between beads, separated by s beads along the chain.

R(s) =
1

N− s

N−s

∑
i=1

((xi(t0)−

− xi+s(t0))2 +(yi(t0)− yi+s(t0))2+

+(zi(t0)− zi+s(t0))2)1/2

(Eq. S2)

2 Procedure of MSD(t) calculation
We calculated MSD(t) according to the following procedure. Using the annealed structure as the initial structure, we continued the
simulations, and structures were generated every ∆t DPD time steps. However, we chose two different time steps: ∆t1 = 10 DPD time
steps and ∆t2 = 2×104 DPD time steps. Simulations, where structures were generated every ∆t1 DPD time steps, were performed during
T1 = 2×104 DPD time steps, and, where structures were generated every ∆t2 DPD time steps, were performed during T2 = 4×107 DPD
time steps. This was done for computational efficiency: we needed to measure MSD(t) in a very broad time range t ∈ [10,4×107], and if
we give out structures with one time step ∆t = 10, it would not be possible to measure MSD(t) in a reasonable time due to extraordinarily
large number of structures to analyze. Therefore, we "split" the time range into two parts, and gave out structures with two different
time steps. We ensured the correctness of such approach by calculating MSD(t = 2×104) and verifying, that both dependencies give the
same value and the standard deviation of mean squared displacement.

The program analyzed n-th pair of structures, separated by t = n∆tk, (k = 1,2) DPD time steps from each other, counting MSDn(t):
the average squared displacement of beads in the given pair of structures. We also distracted displacement of the center of mass of the
chain (COM) from displacements of beads. Then program analyzed next pair of structures, separated by t DPD time steps from each
other, and calculated MSDn+1(t) etc. MSD(t) was calculated as the average over all MSDn(t) values. Standard deviation of MSD(t) was
calculated as the standard deviation in the set of MSDn(t) values. Exact equation for MSD(t) calculation is given in Equation Eq. S3.

MSD(t, t < Tk− t0) =
1
N

∆tk
Tk− (t + t0)

(Tk−(t+t0))/∆tk

∑
n=0

N

∑
i=1

((xi(t + t0 +n∆tk)−

− xCOM(t + t0 +n∆tk))− (xi(t0 +n∆tk)− xCOM(t0 +n∆tk))
2+

+((yi(t + t0 +n∆tk)− yCOM(t + t0 +n∆tk))− (yi(t0 +n∆tk)−

− yCOM(t0 +n∆tk))
2+

+((zi(t + t0 +n∆tk)− zCOM(t + t0 +n∆tk))− (zi(t0 +n∆tk)−

− zCOM(t0 +n∆tk))
2,k = 1,2

(Eq. S3)

3 Bond formation/breaking algorithm
In this section we describe in detail, how formation and breaking of pairwise reversible bonds is realized in our simulations. Every
Nst p = 200 DPD time steps program chooses an i-th bead, and forms a list of beads, which are spatially closer to the chosen i-th bead,
than cutoff radius Rc = 1.0. Then this list is sorted by spatial distance to the i-th bead (beads, which are the closest to the chosen bead,
are on the top of the list). Then, starting from the top of the list, we pick a j-th bead, and it can form a bond with the i-th bead with
probability of bond formation, which is set constant in the simulation (if the bead on the k-th position in the list does not form a bond,
the bead on the k+1-st position is checked, etc, until the end of the list). Therefore, our algorithm of bond formation favors bond
formation of the spatially closest beads to the chosen one. Formed bond is identical to the backbone bonds of the chain. Then program
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iterates over all i-th beads until the end of the chain. If the chosen i-th bead already forms a bond, it can break the bond with probability
of breaking a bond β , which is set constant during the simulation as well.

To study non-equilibrium properties of the chain, we needed to forbid self-intersections of the chain. To do so, we set large bond
stiffness constant K = 150.0, repulsion parameters, and small equilibrium bond length, which was equal to 0.6 in all our simulations
(see Fig. S1). By choosing these parameters we guaranteed the absence of self-intersections1, but broke detailed balance (Fig. S1).
Therefore, there is unequal probability distributions of finding two beads at a distance ri j at the moment of bond formation/breaking
(Fig. S1). The broken detailed balance leads to the difference between absolute values of gained and dissipated energy after every bond
formation and breaking event. To judge whether this effect can affect the system, first we determined the average value of potential
energy change at the moment of bond formation and breaking. This can be done analytically in our system: the potential energy for
bonds in our system is written as Ub

i j =
1
2 K(ri j − r0)

2, r0 = 0.5 DPD units in all our simulations. The average distance between beads
at the moment of bond formation is approximately 0.84 DPD units (see Fig. S1). Hence, the average potential energy change at the
moment of bond formation is approximately +8.67 energy units, in equilibrium kBT = 1 energy unit by default. Due to repulsion forces,
equilibrium bond length is greater than r0 and equals to 0.6. Therefore, the loss of potential energy at the moment of bond breaking is
−0.75 energy units.

These estimates provide us the opportunity to evaluate how broken detailed balance affects our system. The possible effect could be
incorrect local non-equilibrium dynamical behavior of beads after bond formation and breaking events. Dissipative and random forces
acting between beads act as a thermostat in DPD2. Hence, if simulation parameters are chosen correctly, local gain and dissipation
of energy after bond formation/breaking can be compensated by dissipative and random forces from surrounding beads. To ensure
this compensation, we have chosen integration time step δ t = 0.02, noise level σ = 3 and DPD density ρ = 3. If these parameters are
chosen, the relaxation time of exponential decrease of temperature from kBT = 10 energy units to kBT = 1 is around 10 DPD time steps
(Ref.2, Section iii). Therefore, characteristic time for non-equilibrium state existence with kBT ≈ 8.67 energy units is approximately 10
DPD time steps. Moreover, due to repulsion forces acting on the beads after bond formation, not all excessive potential energy 8.67
energy units will heat up the system locally, therefore, the non-equilibrium state will have even less temperature after bond formation.
Hence, beads, which formed a bond, become equilibrated with environment after maximal time of approximately 10 DPD time steps.
Dynamical behavior of the system can be affected by the broken detailed balance on the time scale less than 10 DPD time steps. We
studied dynamical behavior (MSD(t)) on the time scales larger than 10 DPD time steps, and bond lifetime values used in the work
were 5×103, 5×104 and 5×105 DPD time steps. Hence, all quantities measured in our work are not affected by the energy gain and
dissipation due to broken detailed balance.

4 Procedure of globule equilibration in SPS
In our work, we studied conformational properties of equilibrium globule as a reference state. As we mentioned in the paper, we
obtained stable transient state, similar to crumpled globule, during both types of coil-globule transition: in a poor solvent and induced
by pairwise reversible bonds. To obtain equilibrium globule, we used crumpled globule state, formed in a weak poor solvent (χ ≈ 1.5,
SPS), after t = 8×107 DPD time steps, as initial structure. The crumpled globule state is stabilized by topological interactions, therefore,
we needed to facilitate self-intersections of the chain to obtain Gaussian globule. To do so, we set monomer-monomer and solvent-
solvent repulsion parameters aii (i = 1,2) equal to 25.0, and monomer-solvent repulsion was equal to a12 = a21 = 29.5. Since χ value is
determined from difference between ai j and aii (if aii = a j j and, ai j = a ji)2, we conserved the solvent quality, but significantly reduced
overall repulsion between polymer beads, therefore, facilitating self-intersections of the chain. We also reduced bond stiffness parameter
from K = 150.0 to K = 4.0, and increased integration time step to δ t = 0.04. Therefore, as previously described in Ref.3, we allowed
chain to self-intersect, and conserved temperature kBT = 1 in the NVT-ensemble. We performed simulation with these parameters for
t = 5×107 DPD time steps. Then we changed simulation parameters to the initial values, described in Methods for SPS, and performed
simulations for t = 2×107 DPD time steps.
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5 Additional plots
In this section, we provide additional dependencies, supporting the information in the paper.
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Figure S1 Probability distributions of distance between centers of beads in the moment of bond breaking (red) and bond formation (blue). Samples
consist of 96514 distances for each histogram, data is normalized.
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Figure S2 αL and αG values (exponents of R(s) dependencies on the "local" and "global" scale shown in black and red, respectively) depending on the
time passed since simulation started. Figure (a) shows dependencies for the System in a Poor Solvent (SPS) in a weak poor solvent (χ ≈ 1.5), and for
the System with Pairwise Bonds (SPB) with fraction of bonds f ≈ 0.9, bond lifetime is τ = 5×103 steps. Figure (b) shows dependencies for System with
Pairwise Bonds (SPB) with maximal fraction of bonds f ≈ 1, bond lifetime is τ = 5×105 steps, and Figure (c) for SPB with fraction of bonds f ≈ 0.55. It
should be taken into account, however, that fraction of bonds f ≈ 0.55 is reached only after t = 2×106 DPD time steps (Figure c), on the shorter time
scale fraction of bonds was constantly increasing (Figure S4b).

4



0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
8

10

12

14

16

18

20

22

R
ad

iu
s 

of
 g

yr
at

io
n

Fraction of bonds, f
Figure S3 Dependency of the radius of gyration of the chain (N = 2× 104) on the fraction of bonds with lifetime equal to τ = 5× 104. Coil-globule
transition occurs at f ≈ 0.3. Compact conformations are obtained if f ≈ 0.5 and larger.
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Figure S4 Time dependencies of fraction of bonds in the SPB, bond lifetime is equal to τ = 5×104 steps. Bond formation started after Nst p = 200 DPD
time steps passed in every simulation. a) Probability of reversible bond formation is 1.0. As a result, fraction of bonds quickly stabilizes at value f ≈ 1.
b) Probability of reversible bond formation is 0.001, therefore, fraction of bonds reaches the stable value f ≈ 0.55 relatively slowly.
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Figure S5 The figure shows the experimental contact probability dependencies for different species and cell lines. Blue dashed line corresponds
to the equilibrium Gaussian globule and red dashed line corresponds to the fractal globule. Well-known dependence of the contact probability
on genomic distance P(s) ∝ s−1 for Homo sapiens actually is not strictly enforced. For example, contact probability depends on considering
scales and it works for another biological species as well. Moreover, scalings for different cell lines of the same species could significantly
differ from each other on the same scale. Apparently minor protocol changes in Hi-C experiment, different equipment and different data pro-
cessing have a significant impact on the final results. To plot this figure we used publicly available Hi-C datasets re-analyzed with distiller
software with standard parameters (https://github.com/mirnylab/distiller-nf). All replicates, if available, were merged together. The data for
Homo sapiens was retrieved for: K562 cell line (GEO ID GSE63525, https://www.ncbi.nlm.nih.gov/pubmed/25497547), A549 GSE105600,
https://www.ncbi.nlm.nih.gov/pubmed/22955616, HEpG2 GSE105381, https://www.ncbi.nlm.nih.gov/pubmed/22955616; Drosophila
melanogaster cell lines Kc167, Dm3, OSC, S2: GSE69013 https://www.ncbi.nlm.nih.gov/pubmed/26518482; Danio rerio embryos GSE105013
https://www.ncbi.nlm.nih.gov/pubmed/29972771; Mus musculus data from GSE96611 https://www.ncbi.nlm.nih.gov/pubmed/29335546 and
from GSE96107 https://www.ncbi.nlm.nih.gov/pubmed/29053968. This analysis was performed by Alexandra Galitsyna.
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Figure S6 "Local" (αL) and "global" (αG) R(s) scaling exponents for initial structures depending on the time passed since equilibration in athermal
solvent started, chain length N = 2×104 beads, polymer concentration n≈ 6%. Magenta and green dots represent equilibrium values of the exponents
for the swollen and Gaussian chain, respectively.
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Figure S7 "Local" (αL) and "global" (αG) R(s) scaling exponents for chain length N = 2×104 beads, polymer concentration n≈ 1%, f ≈ 1, bond lifetime
τ = 5×104 DPD steps, depending on the time passed since simulation started.
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Figure S8 Particle density profile in the simulation box across x-coordinate (Fig. a), y-coordinate (Fig. b) and z-coordinate (Fig. c).
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