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Sample preparation

Adhesive hard rods (AHR) were synthesized and char-
acterized as described in previous work [1, 2]. Briefly,
silica rods are grown to different lengths in a water-in-oil
emulsion [3], rods are calcined to remove residual poly-
mer, and an octadecyl-brush layer is grafted onto the
silica surface [1]. The hydrophobic coating on the par-
ticle surface (≈ 1 chain nm−2) enables suspension into
organic solvents, such as cyclohexane and tetradecane.
Variations of this general methodology can be extended
to other silica-based particles with different shapes, di-
mensions, and polydispersity [2]. The diameter D, length
L, and aspect ratio L/D of AHR samples are listed in Ta-
ble I from SEM measurements [1].

TABLE I. AHR particle dimensions given as the mean and
one standard deviation obtained from SEM [1].

Sample Diameter (nm) Length (nm) Aspect Ratio, L/D
AR3 259± 37 700± 76 2.7± 0.3
AR4 258± 43 1099± 252 4.2± 0.7
AR6 252± 36 1502± 512 5.9± 1.6
AR7 298± 65 2019± 747 6.8± 2.1

AHR dispersions were prepared by drying the coated
rods under a nitrogen stream and then by drying for
10 − 16 hours at 50 ◦C under vacuum. After drying,
rods were immediately weighed and suspended in n-
tetradecane at a specified volume fraction φ calculated
by φ = mpρ

−1
p (mpρ

−1
p + msρ

−1
s )−1, where mp and ms

are the measured particle and solvent mass, respectively,
and ρp = 1.95±0.03 g cm−3 and ρs = 0.76±0.01 g cm−3

are their densities. The particle density is calculated
by ρp = (mbρ

−1
b + (1 − mb)ρ

−1
SiO2

)−1, where ρb is the

assumed brush density (octadecane, 0.78 g cm−3), and
ρSiO2

is the measured amorphous skeletal density of sil-
ica rods (2.1 g cm−3). The calculated particle density re-
mained consistent for different aspect ratios due to small

variations in the brush mass fraction mb (4% to 6% by
mass) [1]. For reference, particle volume fractions of 0.11,
0.21, 0.31, 0.42, and 0.52 correspond to a mass fraction
of 0.23, 0.41, 0.54, 0.65, and 0.73, respectively. The un-
certainty in φ (±0.01 to ±0.03) was determined from the
higher limit and lower limit of the effective coated parti-
cle density in suspension, where the higher density limit
is 2.1 g mL−1 (silica core), and the lower density limit is
1.8 g mL−1 if solvent is able to swell into a specific pore
volume of ≈ 0.05 mL g−1.

Small-amplitude oscillatory shear rheology (SAOS)

For SAOS frequency sweeps, the critical gel tran-
sition temperature Tgel is defined using the Winter-
Chambon criterion [4, 5], which defines the temperature
at which the dynamic moduli are approximately equiva-
lent and scale with frequency as G′(ω) ∼ G′′(ω) ∼ ω0.5

over a broad frequency range, typically in the range
ω ≈1 rad s−1 to 10 rad s−1. The uncertainty in Tgel
is defined by the smallest temperature increment mea-
sured (±1 ◦C), which is shown as error bars in Fig. 2a of
the main text.

For concentrations where φ > φg, the glass transition
temperature Tg was defined when the dynamic moduli
increased exponentially upon further decreasing T and
the slope ∆G/∆T increases significantly. The uncer-
tainty in Tg is defined by the smallest temperature incre-
ments performed for SAOS frequency sweeps (±1.0 ◦C).
This transition was interpreted as the repulsion-driven
glass (RDG) to attraction-driven glass (ADG) transi-
tion since G′ > G′′ for all examined T and ω. In
Fig. 1, the T -dependent storage modulus G′ is shown
at a fixed frequency ω = 6.3 rad s−1 for sample AR4
and AR6 (φ = 0.42, φ > φg). The black arrows indicate
that the RDG-ADG transition temperature is defined as
Tg = 27±1 ◦C for AR4 (blue circles) and Tg = 29±1 ◦C
for AR6 (green triangles). Below Tg, G′ and G′′ increase
exponentially with decreasing T . Above Tg, the dynamic
moduli are nearly independent of T and are weakly de-
pendent on ω, where G′(ω) > G′′(ω), G′(ω) ∼ ωn and
n ≈ 0 to 0.2.
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FIG. 1. Storage modulus G′ at fixed frequency ω =
6.3 rad s−1 as a function of temperature T when φ > φg. Sam-
ple AR4 (blue circles) and AR6 (green triangles) at φ = 0.42.
Black arrows indicate Tg at the point where a significant
change in G′ occurs. This point is defined as the RDG-ADG
transition since G′ > G′′ at all examined T and ω. Tg ≈ 27 ◦C
for AR4 and Tg ≈ 29 ◦C for AR6. Lines between symbols are
shown as a guide.

Fiber-optic quasi-elastic light scattering (FOQELS)

Additional FOQELS measurements of AR4 at different
φ and T are shown in Fig. 2 as colored symbols, and the
fit to Eq. 1 in the main text is shown as solid black lines.
Additional measurements for AR3, AR4, AR6, and AR7
are shown in Fig. 3.

FOQELS measurements for sample AR4 at φ = 0.21
are shown in Fig. 4, where the autocorrelation functions
have been normalized by β−2 such that β−2[g(2)(t)−1]→
1 as t→ 0 (refer to Eq. 1 in the main text). The data cor-
respond to Fig. 2b in the main text are normalized and
shown on a log-log scale (left) and log-lin scale (right).
The signal to noise ratio decreases significantly for highly
non-ergodic states (T � Tgel) and corresponds to a sig-
nificant decrease in β. Note that sample vials were not
rotated during the measurement. When the system be-
comes highly non-ergodic (T � Tgel), the parameters de-
scribing this non-ergodic state (β) will depend strongly
on the particular speckle pattern that arrests within the
scattering volume [6–8].

Ultra-small angle X-ray and neutron scattering
(USAXS and USANS)

The slit-smeared USAXS and USANS data are com-
pared in Fig. 5, where all USANS data are multiplied
by the constant factor 30.61 = (∆qv,n/∆qv,x)[(ρp,x −

FIG. 2. (a) FOQELS map of the dynamic arrest transition
of AR4 as a function of T and φ. Colors correspond to the
best-fit power-law decay exponent n (Eq. 1 in main text) to
FOQELS measurements. Red symbols corresponds to n = 0
(1− n = 1) and fluid-like dynamics with a signal exponential

decay of the autocorrelation function g(2) − 1. Blue corre-
sponds to n = 1 (1− n = 0) and solid-like dynamics with no
significant decay. Green corresponds to the critical criteria
with n = 0.5 (1 − n = 0.5) which agrees with the frequency-
dependent dynamic moduli measured with SAOS at the criti-
cal gel point. Arrows follow four different paths with varying
T or φ. (b) Path 1 at fixed φ = 0.16 transitions from the
fluid-like to solid-like state with decreasing T (c) Path 2 at
fixed T = Tgel along the critical gel boundary where n ≈ 0.5
(d) Path 3 along the glass boundary defined as φ = φg = 0.37
where the system remains arrested at all examined T . (e)
Path 4 at fixed T = 40 ◦C transitions from the solid-like to
fluid-like state with decreasing φ, and also returning to the
starting point of Path 1 in the fluid-like state.

ρs,x)/(ρp,n − ρs,n)]2, where ∆qv,n and ∆qv,x are the re-
spective slit lengths for USANS (0.117 Å−1) and USAXS
(0.0282 Å−1), ρp,n and ρp,x are the particle scattering
length densities for neutrons (2.56 × 10−6 Å−2) and X-
rays (1.56×10−5 Å−2), ρs,n and ρs,x are the solvent scat-
tering length densities for neutrons (−4.44 × 10−7 Å−2)
and X-rays (7.44× 10−6 Å−2). Scattering measurements
using X-rays (USAXS and SAXS) and neutrons (USANS
and SANS) are shown in Fig. 6 across the full range of ac-
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FIG. 3. (a) FOQELS map of the dynamic arrest transi-
tions of AHR with different L/D as a function of T and
φ. Closed symbols correspond to FOQELS measurements
where T = Tgel (slanted lines) or φ = φg (vertical lines,
see legend). Open symbols correspond to SAOS measure-
ments. Arrows highlight shifts in the gel-like boundary at
fixed φ ≈ 0.21 (Path A) and the repulsive glass-like boundary
at fixed T = 40 ◦C (Path B). (b-e) FOQELS measurements

of the autocorrelation function g(2) − 1 for AR3, AR4, AR6,
and AR7 (top to bottom), in which the left and right columns
corresponds to Path A and B, respectively.

cessible q. All USAXS measurements are shown in Fig. 7.
All USANS measurements are shown Fig. 8.

FIG. 4. Normalized FOQELS measurements for sample AR4
at φ = 0.21, which have been normalized by β−2 to approach
1 in the limit that t → 0. For comparison, symbols here
correspond to the data shown in Fig. 2b (main text) on a
normalized log-log scale (left) and log-lin scale (right). Solid
lines correspond to model fits. Solid blue symbols correspond
to the defined critical gel temperature Tgel = 25.8± 0.2 ◦C.

FIG. 5. Comparison of slit-smeared USAXS (solid symbols,
15 ◦C) and USANS (open symbols, 15-27 ◦C) on an absolute
intensity scale. USANS data are vertically scaled by the con-
stant 30.61 (see text) corresponding to different slit lengths
and scattering length densities for X-ray and neutron scatter-
ing measurements.

Scattering model for rigid cylinders with short-range
attractions

The scattered intensity I(q) is related to two distin-
guishable contributions, the form factor P (q) and the
structure factor S(q). The form factor describes the
size and shape of particles, while the structure factor
describes the relative location of particles distributed
throughout the sample. For a homogeneous dispersion of
monodisperse spheres, the scattered intensity is I(q) =
NP (q)S(q), where N is the number density of spheres.
With the appropriate models from integral equation the-
ories and closure relationships, the structure factor con-
tribution can be linked to the interparticle pair potential
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FIG. 6. The absolute scattering intensity I(q) of sample AR4
at φ = 0.32 and T = 15 ◦C for different scattering methods
defined in the legend. The model fit from Eq. 3 (black line)
captures the measured I(q) across the full range of q. The in-
set corresponds to the measured effective structure factor con-
tribution Seff (q) (symbols), which is fit to the Baxter sticky
hard sphere structure factor model (black line).[9] The τ pa-
rameter mainly affects the low-q region and compressibility
as q → 0, while the Reff (σReff ) mainly affects the position
(width) of the first primary peak. Note that X-ray data (US-
AXS and SAXS) and neutron data (USANS) are slit-smeared
data, while the SANS data is pinhole-smeared data, both of
which are accounted for in the scattering model and SasView
fitting software.[10]

to extract quantitative information of interparticle inter-
actions.

Interpreting the scattered intensity from a concen-
trated dispersion of anisotropic particles is less trivial.
However, here a simple model is proposed to decouple
the particle form factor and structure factor, which co-
incidentally follows the rigid particle approximation pro-
posed in the framework of reference interaction site mod-
els (RISM) [11–14]. In the RISM framework, anisotropic
particles are defined by a collection of smaller symmetric
interaction sites. Each site is rigidly linked to other sites
within the same particle, which is defined by the site-site
(ss) intraparticle structure factor ωss(q). For sites i and
j arranged in a straight line of length L and site spac-
ing D, ωss(q) = (N)−1

∑N
i,j=1(|i−j|qD)−1 sin(|i− j|qD)

[13, 15]. N is the number of sites per particle, or equiva-
lently N = L/D when L/D is an integer. Sites between
neighboring particles can interact based on their pair-
wise interaction potential, which is defined by the site-
site interparticle structure factor Sss(q). Written in the
site-site reference frame, the total scattered intensity I(q)
for monodisperse sites is given similarly to monodisperse
spheres as [13]

I(q) = NsPss(q)Sss(q) (1)

FIG. 7. (a-d) Desmeared USAXS measurements of AR3,
AR4, AR6, and AR7 (top to bottom) in the solid-like state
at T = 15 ◦C (left column). Fits to the scattering model in
Eq. 3 (Eq. 2 in main text) are shown as colored lines. The
corresponding effective structure factor contribution Seff (q)
(symbols) and fits to the Baxter sticky hard sphere structure
factor (lines) are shown in the right column. Core volume
fractions are defined in the figure legends. For clarity, I(q)
and Seff (q) measurements are vertically shifted by factors
defined in the figure legend.

where Ns is the number density of sites, and Pss(q) is the
form factor (shape) of an indistinguishable site.

To describe Eq. 1 in terms of the particle center-of-
mass (cm) reference frame, the rigid particle approxima-
tion is employed, given as [13–16]

Sss(q) ∼= ωss(q)Scm(q) (2)

in which Scm(q) is the center-of-mass structure factor. In
this approximation, it is assumed that interaction sites
are indistinguishable, particles retain an isotropic dis-
tribution, particles acquire an effective isotropic density
profile, and particles do not deform or rotate. In other
words, particles are assumed to behave as an effective
spherical cloud of interaction sites. This approximation
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FIG. 8. (a-c) Slit-smeared USANS measurements of AR4,
AR6, and AR7 (top to bottom) at T = Tlow (blue symbols,
15 ◦C or 26 ◦C) and at T = Thigh (red symbols, 40 ◦C).
Core volume fractions are defined in the figure. For clarity,
I(q) measurements are vertically shifted by factors 100, 30,
10, 3, and 1 (top to bottom). Solid red lines correspond to
the model fit (Eq. 3) at Thigh = 40 ◦C, and solid blue lines
correspond to model fit at either Tlow = 15 ◦C or 26 ◦C.

was also proposed in mode-coupling simulations of vari-
ous concentrated anisotropic particles [13–19].

Rearrangements to Eq. 1 are made with the rigid
particle approximation in Eq. 2 and the substitution
Nsωss(q)Pss(q) = NcylPcyl(q). The latter substitu-
tion conserves total particle volume fraction φ, in which
Pss(q) is a cylindrical site form factor with L/D = 1,
Ncyl is the number density of cylinders, and Pcyl(q) is
the cylinder form factor (solid lines in Fig. 1 in main
text). Note that using orientation-averaged cylindrical
sites, instead of spherical sites, is a good approximation
only at lower q (q < 2πD−1) and introduces subtle error

at higher q that correspond to differences in scattering
from the site surface [20]. Within the particle center-
of-mass reference frame, the total scattered intensity is
approximated as

I(q) ∼= NcylPcyl(q)Scm(q) (3)

where Scm(q) is the isotropic center-of-mass structure
factor of interest. Eq. 3 (Eq. 2 main text) is fit to the
measured I(q) using SasView software [10] with addi-
tional integration to account for polydispersity in cylin-
der radius R and length L, as described below.

The orientation-averaged form factor was fit with a
polydisperse cylinder model Pcyl(q) given by [10]

Pcyl(q) =
1

Vavg

∫ ∫ ∫
[Fcyl(q, α)]

2
f(R)f(L) sinα dα dR dL

(4)
with

Fcyl(q, α) = 2(∆ρ)(πR2L)
sin( 1

2qL cosα)
1
2qL cosα

J1(qR sinα)

qR sinα
(5)

and a Schulz distribution in the cylinder radius R and
length L,

f(x) =
1

A
(z + 1)z+1

(x
x̄

)z
exp

(
−(z + 1) x/x̄

x̄ Γ(z + 1)

)
(6)

where Vavg is the average particle volume, ∆ρ = ρp − ρs
is the scattering length density (SLD) difference between
the particle and solvent, α is the angle between the scat-
tering wavevector q and the cylinder length axis, J1 is the
first order Bessel function, z is a parameter given by the
standard deviation σx and mean x̄ with z = (1−p)2/(p)2,
p = σx/x̄ (standard deviation and mean of x), and A is a
normalization constant to ensure the function integrates
to unity [10].

The center-of-mass structure factor Scm(q) was fit with
the analytical form of the Baxter sticky hard sphere
structure factor model [9, 21, 22], as implemented in
SasView v4.1.2 [10], which uses the Orstein-Zernike in-
tegral equation and the Percus-Yevick closure relation-
ship to relate the interparticle pair potential, radial dis-
tribution function, and the structure factor. The reduced
temperature τ , or Baxter sticky parameter, is defined as
[9, 10]

τ =
1

12δ
exp (−U0/kBT ) (7)

where the perturbation distance parameter is δ =
∆/(Deff + ∆), ∆ is the distance of short-range attrac-
tion, Deff (= 2Reff ) is the effective interaction diame-
ter, and U0 is the attraction potential energy. Decreasing
τ corresponds to increasing attraction strength or stick-
iness. From the extended theory of corresponding states
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[23–25], when the range of attraction is small relative to
the core diameter, τ can be related to the reduced sec-
ond virial coefficient B∗2 by equating through square-well
potential, giving

B∗2 = 1− (4τ)−1 (8)

in which B∗2 = B2/B
HS
2 , B2 is the (temperature-

dependent) second virial coefficient, and BHS
2 is the

(athermal) second virial coefficient for a hard sphere.
For a hard sphere system, BHS

2 must be positive since
BHS

2 = (2/3)πD3 = 4Vc, in which D is the hard core
diameter and Vc is the hard core volume. For a system
of adhesive hard rods, conditions where B∗2 < 1 (B∗2 > 1)
correspond to net-attractive (net-repulsive) interactions
relative to a hard sphere system at equivalent interaction
volume fraction η, in which η = φ(1− δ)−3. The special
condition in which B∗2 = 0 is the Boyle temperature,
where the ensemble-averaged attractions and repulsions
negate each other, and the system behaves as an ideal
gas.

Model fitting procedure

The scattering model given in Eq. 3 (Eq. 2 in the
main text) can be easily reproduced using SasView soft-
ware [10]. After loading SasView, use the multiplication
function (Fitting, Add/Multiply Models) to multiply a
cylinder form factor model (model1 = cylinder) and the
sticky hard sphere structure factor (model2 = stickyhard-
sphere). The cylinder form factor in SasView employs the
above Eq. 4 and Eq. 5, as well as Schulz distributions to
account for polydispersity in D and L using Eq. 6. The
sticky hard sphere structure factor is the analytical form
proposed by Menon et al. [9].

The only two freely fitting parameters in the scatter-
ing model include (1) the reduced temperature τ and
(2) the effective interaction radius Reff . All other pre-
determined and unknown parameters are fixed as dis-
cussed below. Pre-determined model parameters include
(1) the core volume fractions φ and (2) the cylinder form
factor parameters D, σD, L, and σL, which are based
on the fit to Pcyl at dilute concentrations. The best fit
parameters to Pcyl(q) are given in Tab. II, which cor-
responds to the solid lines shown in Fig. 1 of the main
text. Scattering at high q (> 0.01 Å−1, Fig. 6) corre-
sponded to the internal pore structure of rods. The rod
dimensions were significantly larger than internal pores,
such that internal pores decreased the effective particle
SLD in the lower q-range of interest (q < 0.01 Å−1).
The internal porosity (≈ 20%) gave an effective particle
SLD of 2.56 × 10−6 Å−2 and 1.56 × 10−5 Å−2 for neu-
tron and x-ray scattering, respectively. The particle form
factors were measured for calcined silica rods suspended
in ethanol under dilute conditions (φ ≈ 0.002), where
interparticle interactions were negligible and Scm(q) ≈ 1.

TABLE II. USAXS fit parameters using the polydisperse
cylinder form factor model Pcyl(q). Parameters include scale
or volume fraction (φ), cylinder radius (R = D/2), polydis-
persity in radius (PD=σR/R), and cylinder length (L). Fixed
parameters include the incoherent scattering background (B),
the effective particle SLD (ρp), the solvent SLD (ρs), and
polydispersity in length (σL/L).

Parameter AR3 AR4 AR6 AR7
Scale (φ) 2.38E-03 2.38E-03 2.41E-03 2.23E-03
B (cm−1) 0.12 0.12 0.12 0.12
ρp (Å−2) 1.56E-05 1.56E-05 1.56E-05 1.56E-05
ρs (Å−2) 7.44E-06 7.44E-06 7.44E-06 7.44E-06

R (Å) 1292 1306 1275 1428
σR/R 0.262 0.252 0.214 0.258
L (Å) 10224 17018 22955 28356
σL/L 0.11 0.23 0.34 0.37

The other unknown model parameters include (1)
the reduced short-range attraction distance δ and (2)
the polydispersity in the effective interaction radius
PDReff = σReff/Reff . The short-range perturbation
distance δ = 0.01 was fixed based on approximate brush
distances (≈ 3 nm) and rod diameters (≈ 300 nm).
Smaller δ (< 0.01) produces negligible change in τ and
Reff . Moreover, equivalent τ values are obtained at
equivalent interaction volume fractions η = φ(1 − δ)−3,
which accounts for systems with different δ [9]. Mean-
while, PDReff was determined empirically to be ≈ 0.18
by minimizing the model error for all scattering mea-
surements and for all conditions of L/D, φ, and T . The
empirical condition PDReff = 0.18 was similar to the
rod diameter polydispersity (σD/D ≈ 0.2 − 0.3), and
it was consistent for both neutron and X-ray scattering
measurements. The unknown parameters δ = 0.01 and
PDReff = 0.18 were fixed in all model fits to best eval-
uate the τ parameter of interest.

The effective structure factor contribution, Seff (q) =
I(q)/(P (q)Ncyl) was obtained from desmeared USAXS
curves using the Indra software package [26–28]. Con-
sistent values of τ and Reff were also obtained from
fitting only the contribution of Seff (q) to the Baxter
model [9], as shown in Fig. S7. Error minimization rou-
tines between the model and measurements were per-
formed using SasView v4.1.2 [10]. In all analysis rou-
tines, the particle anisotropy is important and accounted
by averaging the scattered intensity over all particle ori-
entations. Shape anisotropy is accounted for in the
orientation-averaging of Pcyl(q) (solid lines in Fig. 1 main
text), and it is inherent within the measured form fac-
tor P (q) (symbols in Fig. 1 main text). The measured
particle form factor P (q) appears in the calculation of
Seff (q) = I(q)/(P (q)Ncyl), which accounts for the shape
anisotropy in Seff (q).
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Model parameter sensitivity

The error in τ corresponds to the systematic error
obtained from repeated measurements and fitting trials,
which employed both neutron scattering neutron and X-
ray scattering methods. For all samples, the standard de-
viation in τ was relatively small (< 10%) when φ < 0.3,
but variations increased considerably when φ > 0.3. This
larger variation in τ was speculated to occur from com-
peting aging effects between liquid crystal formation and
glass formation at higher φ.

The parameter Reff was found to decrease within the
range between ≈ 230 nm to ≈ 150 nm with increasing φ.
Importantly, these variations in Reff did not significantly
affect the τ fit at low-q. In Fig. 9, example perturbations
in all model fitting parameters (a) τ at fixed Reff and
(b) Reff at fixed τ are shown for sample AR4 at differ-
ent φ (top to bottom, φ = 0.11, 0.32, and 0.52). This
sensitivity analysis demonstrates that the uncertainty in
Reff is greater at lower φ, while the uncertainty in τ is
greater at higher φ.

In Fig. 9c, different constraints to the effective interac-
tion radius Reff are also compared. As demonstrated
for a wide range of φ, the unconstrained fit to Reff

(177 nm < Reff < 213 nm, best fit, black lines) pro-
duced a nearly indistinguishable fit when compared to
the constrained fit (Reff = 177 nm, green lines). If the
constraint Reff = R was employed (orange lines), then
there is discrepancy between the model fit and measure-
ments at intermediate q where q ≈ π/Reff . However,
notice that variations in Reff or the polydispersity in
Reff (pink lines) do not significantly influence the low-
est q-range, which is mainly sensitive to τ at a given
concentration. Consequently, the dimensionless state di-
agram shown in Fig. 4a of the main text does not change
significantly with the fitting constraints imposed on the
unknown effective interaction radius Reff .

When fitting I(q) obtained from simulations, the con-
ditions Reff = D/2, ∆ = 2Rg = 0.08D, and δ = 0.074
were used. Similar to the analysis of experimental data,
physically relevant variation of Reff did not significantly
affect the fit at low-q. As demonstrated in Fig. 10, sim-
ulations of bidispersed cylinders confirmed that τ and
S(q → 0) do not change significantly after explicitly
adding polydispersity in D, L, or δ.

We suspect the apparent discrepancy in the best-fit
effective radius for simulations (Reff = R) and exper-
iments (Reff ≈ 1.3R to ≈ 2R) occurs from neglecting
relevant forces in simulations. For example, simulations
do not consider interparticle friction and hydrodynamic
interactions between rods, which may produce a different
average center-of-mass distance (Reff ) at the dynamic
arrest transition. Nevertheless, this apparent discrep-
ancy in Reff between simulation and experiment does
not influence the reported effective interaction strength

FIG. 9. Measured desmeared USAXS intensities for sample
AR4 at 15 ◦C and three different φ (symbols, top to bottom,
0.11, 0.32, and 0.52), which are vertically shifted for clarity.
For comparison, the same measured I(q) (symbols) and best
fits (black lines) are shown in each panel. The two key un-
known parameters in the model are the effective interaction
radius Reff and the reduced temperature τ . Solids lines show
the applied model fits to Eq. 3 at (a) fixed Reff with varying
τ , and (b) fixed τ with varying Reff . Perturbations of the fit
parameters in (a) and (b) correspond to lower values (blue),
higher values (red), and at the best fit value (black) values
shown in the panel [20]. (c) Additional constraints in the
unknown hard sphere interaction radius Reff are compared
with fixed Reff (green, 177 nm, PDReff = 0.18), with the
constraint Reff = R (orange, 130 nm), and with no polydis-
persity and Reff = R (pink, 130 nm, PDReff = 0). Although
variations do occur near q ≈ π/Reff , no significant variations
in the low-q region, which remain sensitive primarily to τ at
a given η.
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FIG. 10. MC simulations are performed for cylinders with
orientation-dependent attractions and hard-core repulsions
[29, 30]. The orienation-averaged scattered intensity I(q) for
monodisperse cylinders at φ = 0.11 (η = 0.14) is shown as
closed symbols, while I(q) for bidispersed cylinders is shown
as dashed lines. Symbol and dashed line colors correspond to
different attraction strengths or potential well-depths, given
as ε = 0.32 (red), ε = 15.44 (green), and ε = 63.44 (blue).
Polydispersity is defined as the ratio of the standard devia-
tion and mean. For the monodisperse system, PD = 0 for
all parameters. For the bidispersed system, PDL = 10% for
cylinder core length L, PDD = 5% for cylinder core diam-
eter D, and PDδ = 5% for the reduced attraction distance
δ = ∆/(D + ∆). The monodisperse and bidispersed systems
of cylinders with orientation-dependent attractions can be de-
scribed by an effective isotropic potential with short-range at-
tractions, as characterized by a reduced temperature τ . Data
are vertically shifted for clarity.

τ at the gel boundary (Fig. 4a of the main text) or the
glass volume fraction φg at the glass boundary (Fig. 4b
of the main text). Although the simulations are lim-
ited to lower core volume fractions φ < 0.2, experiments
suggest the rigid particle approximation and scattering
model (Eq. 2 from the main text) is suitable for concen-
trated AHR dispersions up to φ ≈ 0.52 and L/D ≈ 7.

Dimensionless state diagram

When δ ≤ 0.01, variations in δ have negligible ef-
fect on τ and Reff . However, when approximately
0.03 ≤ δ ≤ 0.1, the sensitivity to δ can be significant
when comparing results in the τ − φ plane, even when
attraction distances are relatively short-ranged (≤ 10%
D). This δ-dependence emerges from the perturbation
solution to the Baxter sticky hard sphere model proposed
by Menon et al. [9]. This solution considers the interac-
tion volume fraction η instead of the core volume fraction
φ, in which η = Nπa3/6, N is the number density, a is
the interaction diameter a = D + ∆, D is the hard core

diameter, and ∆ is the short-range interaction distance.
The perturbation parameter, δ = ∆/a = ∆/(D + ∆),
ranges from 0 to 1 in the limit that ∆ ranges from 0 to
∞, respectively. The relationship between the core vol-
ume fraction φ and the interaction volume fraction η is
given by η = φ(1 − δ)−3 [9]. If δ resides within approx-
imately 0.03 ≤ δ ≤ 0.1, then the distinction between η
and φ becomes significant.

By comparing τ as a function of η, as opposed to the
core volume fraction φ, the somewhat arbitrary choice
of δ is accounted for between different systems. Conse-
quently, the τ−η plane provides a more suitable compar-
ison between systems with different δ, provided that the
attraction range remains small compared to the diameter
(∆ � D). The τ values shown Fig. 4a in the main text
are re-scaled in Fig. 11 as a function of the core volume
fraction φ using the conversion η = φ(1−δ)−3. The differ-
ence between φ and η is negligible when δ ≤ 0.01 (δ listed
in the caption). However, the conversion between φ and
η is significant when approximately δ > 0.03. Given that
δ = 0.074 in simulations, the AHR simulations demon-
strate better agreement with AHR experiments and pre-
vious AHS measurements in the τ − η plane. Thus, the
systematically higher τ obtained from AHR simulations
is attributed to differences in δ when compared in the
τ − φ plane.

The reduced second virial coefficient B∗2 is related to
the reduced temperature τ by Eq. 8 [23]. For comparison,
the results from Fig. 4a of the main text are also shown
in the B∗2 − η plane in Fig. 11b. Refer to the caption
for the symbol notation and δ values. The conditions
B∗2 < 1 occur for all η and L/D, which corresponds to
net-attractive interactions relative to perfect hard sphere
behavior. The convergence of B∗2 at lower η < 0.2 is also
evident for AHR experiments and simulations at differ-
ent L/D. For simulated systems at the rigidity percola-
tion criterion 〈nc〉 ≈ 2.4, the results for AHR simulations
show good agreement with AHS simulations [32], despite
differences in the interaction potentials and δ parameters.

Particle volume dependence

Previous measurements of adhesive hard spheres re-
vealed an apparent correlation between particle size and
τ [24, 25, 31]. This particle size dependence was at-
tributed to the effects of gravity, where gravity tends to
increase the attraction strength (decrease τ) with increas-
ing particle size [31].

To compare the particle size dependence for spheres
and rods, the average particle volume Vp and the cor-
responding τ are shown in Fig. 12 at various φ. Dif-
ferent ranges of φ are shown by black squares (φ =
0.10− 0.12), red circles (0.21− 0.25), blue upward trian-
gles (0.30−0.34), orange downward triangles (0.41−0.43),
and green diamonds (0.50− 0.52). The solid lines shown
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FIG. 11. Data from Fig. 4a of the main text are shown in
the τ − φ plane, where φ = η(1− δ)3. The δ values for differ-
ent systems include: AHS experiments, 30 nm AR1, δ = 0.01
(left triangles) [24, 25]; 300 nm AR1, δ = 0.001 (down trian-
gles) [31]; AHS simulations, δ = 0.01 for the rigidity percola-
tion criterion 〈nc〉 ≈ 2.4 (open left triangles) and vapor-liquid
binodal (bottom gray area) [32]; AHR simulations, δ = 0.074
(this work); and AHR experiments, δ = 0.01 (this work).
Right-filled symbols correspond to AHR experiments in the
glassy state where φ ≥ φg. The case η = φ (δ → 0) is
used for the AHS critical point (bottom-filled star) [33], fluid-
crystal boundary (top right gray area) [34, 35], and the sim-
ulated RDG-ADG transition (top right solid lines) [35] which
is shifted to higher φ based on prior experiments.[36] (b) For
comparison, the dimensionless state diagram from the main
text is shown in terms of the reduced second virial coefficient
B∗2 and the interaction volume fraction η. Symbols and lines
correspond to the descriptions above.

in Fig. 12 are the best-fit line for AHS (AR1), given by
τ = m log(Vp) + b. Solids lines are extrapolated to larger
Vp to compare between AHS and AHR.

For AHS, the average particle volume Vp = πD3/6 is
calculated using the particle diameter D of 28 ± 3 nm,
108 ± 11 nm, and 290 ± 29 nm, which are referred to
as AR1 30 nm, AR1 100 nm, and AR1 300 nm, respec-

FIG. 12. The τ values are shown as a function of the average
particle volume Vp. AHS systems are labeled as AR1 30 nm,
AR1 100 nm, and AR1 300 nm [24, 25, 31]. AHR systems are
labeled as AR3, AR4, AR6, and AR7 (this work). Samples
are grouped into different ranges of φ, as shown in the legend.
The solid lines correspond to the best-fit line for AHS systems,
τ = m log (Vp) + b, which is extrapolated to higher Vp to
compare with AHR systems.

tively [24, 25, 31]. For AHR, the average particle volume
Vp = πD2L/4 was calculated using the average mean core
diameter D and length L given in Table I. The higher
and lower boundaries (x-error bars) are shown using ±1
standard deviation in D and L.

At lower concentrations (φ < 0.2), τ values for AHS
and AHR are consistently within the range τ ≈ 0.1 −
0.2 and do not depend significantly on Vp. At higher
concentrations (φ > 0.2), a decrease in τ is generally
correlated to an increase in Vp. There are exceptions
to this general trend, for example, AR3 in the range φ =
0.41−0.52, AR4 at φ = 0.32−0.52, AR6 at φ = 0.32, and
AR7 at φ = 0.31. In general, these deviations correspond
to rod concentrations approaching or exceeding the hard
rod glass boundary defined by φg for a given L/D.
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