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I. SIMULATION DETAILS

In each of the 20,000 simulations that we performed, the same initial configuration of particles
is used as a starting point. This configuration is minimized using the FIRE minimization algorithm,
which brings the configuration to its local potential energy minimum To do this we used an
energy stopping tolerance of 1 x 10719, a force stopping tolerance of 1 x 107>, a maximum of
1,000 iterations of the minimizer, and a maximum of 1,000 force and energy evaluations. To ensure
independence of the simulations, the particles in this configuration are then given initial velocities
drawn from a Gaussian distribution with mean zero and with a total linear momentum of zero and
a temperature of 2.0. The seeds used to initialize random particle velocities in each of the 10,000
simulations are generated using the Bash SRANDOM function, which returns a pseudorandom
integer in the range 0 to 32,767 (see http://tldp.org/LDP/abs/html/randomvar.html).

Each simulation is then run at constant particle number, volume, and temperature (canonical
NVT ensemble) with an integration timestep of A = 0.005 in Lennard-Jones units. For the du-
ration of the simulation, we cool the system linearly from the initial temperature of 2.0 to a final
temperature of 0.05 using a damping parameter of 0.5. The system is constrained to two dimen-
sions during the simulation using the enforce2D command in LAMMPS, and the linear momentum
is zeroed in each dimension at every timestep. Particle configurations (both scaled and unscaled
coordinates) are recorded every 100,000 steps. Unscaled coordinates refer to the raw coordinates
output by a simulation. Scaled coordinates refer to the raw coordinates normalized so that they lie
within the unit interval [0, 1].

After the simulation steps are complete, we measure the system’s inherent structure energy, also
at intervals of 100,000 steps, by loading in the scaled configurations output from the simulation.
To compute inherent structure energy, we again use the FIRE minimization algorithm as described
above, this time with a maximum of 10,000,000 iterations and a maximum of 10,000,000 force
and energy calculations.

Figure [I] shows comparisons of the average radial distribution functions of liquid and glass

configurations in dataset 1, where the radial distribution function is defined as
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Here, N is the total number of particles, ©; is the total number of type i particles, N; is the total
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number of type j particles, p is the total density, J is the delta functional, r,,, is the vector from
particle m to particle n, and the average is taken over all vectors r with magnitude r. We calculated
the radial distribution functions in LAMMPS using 500 histogram bins and a cutoff distance of
10044. As expected, these radial distribution functions exhibit clear structural differences between
the liquid and glass configurations, with the glasses having higher and sharper peaks than the
liquids.

At T = 0.55 the 10,000 configurations from .., = 2 X 107, which are liquids, have a mean
inherent structure energy of -3.86698 with a standard deviation of 0.00382, while at 7" = 0.05
the 10,000 configurations from #.,,; = 2 x 10°, which are glasses, have a mean inherent structure
energy of -3.86744 with a standard deviation of 0.00288. These sets of configurations, therefore,
have approximately the same energy.

We computed average radial distribution functions comparing the configurations from these
glasses and liquids, which comprise dataset 6, shown in Figure 2] Note that the structures are

much more similar than those shown in Figure|[I]

II. IMAGE DATA FOR CNNS

We utilized CNNs to classify liquid and glass configurations by rendering them as images. For
a given configuration, we load its scaled particle coordinates and particle types as a numpy array
in Python and used the matplotlib package to save the configuration as a 250 x 250 pixel PNG
image with 100 dots per inch. As noted at https://lammps.sandia.gov/doc/dump.html: "Because
periodic boundary conditions are enforced only on timesteps when neighbor lists are rebuilt, the
coordinates of an atom written to a dump file may be slightly outside the simulation box...atom
coords are written in a scaled format (from 0 to 1)...an x value of 0.25 means the atom is at
a location 1/4 of the distance from xlo to xhi of the box boundaries.” Upon inspection, most
particles have coordinate values between 0 and 1, with only occasional exceptions slightly outside
these bounds, e.g. values such as 1.0001. This does not affect our analyses. We remove the axes
and the frame from the image so that only the particles are rendered in the image, without any
additional artifacts. Type A particles are represented as orange dots and type B particles as blue
dots using the scatter function, with a dot size of s = 1. The image is then slightly cropped in
order to remove any unnecessary white space. In some images this slightly truncates particles

at the edges of the image, but we found that this does not inhibit the performance of the CNN.
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Figure 1: Average (a) A-A, (b) A-B, and (¢) B-B radial distribution functions of 10,000 configurations at

T =1.99 and 10,000 configurations at T = 0.05 with 7.y, = 2 X 107 (dataset 1). Glasses (green) are clearly

distinguishable from liquids (blue) because of their higher and sharper radial distribution function peaks.

Metadata representing these images for a dataset are saved in a JSON file.

During training the generator function loads a batch of training images into a numpy array by
reading their file paths from the metadata JSON file. This function converts the liquid and glass

labels into a one-hot vector representation, i.e. ([0, 1] for glasses and [1, 0] for liquids).
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Figure 2: Average (a) A-A, (b) A-B, and (C) B-B radial distribution functions of 10,000 configurations
at T = 0.55 with #,,,; = 2 x 107 and 10,000 configurations at T = 0.05 with t.o, = 2 X 10° (dataset 6).
Glasses (green) are distinguishable from liquids (blue) because of higher and sharper radial distribution
function peaks, but the differences are much less severe than in Figure [I]as the glasses and liquids here

have the same average inherent structure energy.



III. HYPERPARAMETER OPTIMIZATION FOR D-MPNNS

The hyperopt Sequential Model-based Global Optimization (SMBO) algorithms form a proba-
bilistic model that maps hyperparameters to a probability of a score on the loss function, P(y|x).
This probabilistic model is called a surrogate. SMBO methods work by choosing the next set of
hyperparameters to test on the loss function by selecting hyperparameters that perform best on
the surrogate function.? As each set of hyperparameters is evaluated, the method updates the sur-
rogate probability model in order to make increasingly well-informed guesses. After a specified
number of iterations, the method suggests the optimal set of hyperparameters. The specific SMBO
method that we use in this work is called a Tree-structured Parzen Estimator (TPE), which is thor-
oughly described in Bergstra ez al. and which we follow closely here? There are different ways of
identifying which hyperparameters to select based on the surrogate model in an SMBO method,
but one of the most effective is a metric called Expected Improvement, otherwise known as an
"exploration-exploitation" criterion. Given a desired threshold value for the objective function, y*,

and some set of hyperparameters x, the Expected Improvement is given by

*

El- (x) = / ’ (V" =¥)P(y|x)dy. (2)

—o00

The first factor in the integrand promotes values in regions that are likely to contain objective func-
tion minima (exploitation), while the second term promotes regions that have greater uncertainty
(exploration). When this integral is positive, it means that the hyperparameter set x is expected to
yield an improvement relative to the threshold value y*.

In the TPE algorithm, instead of modeling the surrogate directly as p(y|x), this method uses

p(xy)p(y)
p

Bayes rule, p(y|x) = oo model p(x|y) and p(y) instead. p(x|y) is broken down into /(x)

and g(x), such that

I(x) y<y*
p(xly) = (3)

glx) y>y*

In other words, we create two different distributions for the hyperparameters: one where the ob-
jective function value is less than the threshold, /(x), and one where the objective function value is

greater than the threshold, g(x). These non-parametric densities are constructed after some num-
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ber K of evaluations of the objective function. y* is chosen to be slightly greater than the best
observed objective function score.

In this approach, the Expected Improvement is given by

y*
Ble(x) = [ (" -pPe (ley(i’; Way, O
which can be rearranged as
8 )" 5)

where v = p(y < y*) (no specific p(y) is necessary). So, the TPE works by drawing sample
hyperparameters from /(x), evaluating them in terms of g(x)/l(x), and returning the set x that

gives the best expected improvement value.

IV. ATTEMPTS TO INTERPRET CNNS

In an attempt to interpret the CNNs, we computed the feature maps produced by the first con-
volutional layer for several glass and liquid images that were correctly classified as such by the
best network trained on dataset 1. Visualizing components of neural networks is gaining traction
as a method for interpretation (for example, see https://distill.pub/2017/feature-visualization/).
Visualizations of these feature maps for representative liquid and glass configurations are shown

in Figure[3]

These visualizations are not clearly interpretable. Feature maps 3 (Figures [3(g) and [3(h)) and
6 (Figures [3(m) and [3[(n)) are blank. Feature maps 1 (Figures [3[c) and [3[d)) and 2 (Figures [3|(e)
and [3|(f)) appear to show some kind of texture pattern, with map 1 having bumps that are visually
reminiscent of regions of the original images concentrated with type A (orange) particles. Feature
maps 4 (Figures [3](i) and [3{j)) and 5 (Figures [3(k) and [3(1)) appear to highlight specific pixels in
the image. Perhaps these correspond to specific particles from the original images, but they do not
map back directly to pixels that correspond to specific particle locations.

We attempted a different method for interpretation based on our prior knowledge about local

geometric structure in two-dimensional Kobb-Anderson binary mixtures. As evidenced in Reid et
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Figure 3: First convolutional layer feature map visualizations for representative liquid and glass
configurations. The network used here is a model optimized on dataset 1. The glass and liquid images are
taken from #,,,; = 2 x 107 data and were correctly classified by the network. The axes on all of these plots
correspond to pixel number. (a) is the original glass configuration; (b) is the original liquid configuration;
(c) is glass feature map 1; (d) is liquid feature map 1; (e) is glass feature map 2; (f) is liquid feature map 2;
(f) is glass feature map 3; (h) is liquid feature map 3; (f) is glass feature map 4; (h) is liquid feature map 4;

(f) is glass feature map 5; (h) is liquid feature map 5; (f) is glass feature map 6; (h) is liquid feature map 6.
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al., the degree of five-fold symmetry in a liquid-cooled glass is much higher than that in liquids
at higher temperatures and higher inherent structure energies > One possibility is that the network
has identified this geometric quantity as a means for classifying liquids and glasses and that the
kernels in the CNN have been trained to identify local pentagonal arrangements of particles. As
in Reid et al., we consider a region of five-fold symmetry to be characterized by a type B (blue)
particle surrounded immediately by a pentagon of type A (orange) particles. Perhaps, if the CNN
is trained to correlate high concentrations of five-fold symmetry with glassy materials, an artificial
image that is saturated with five-fold symmetry patterns will be classified by the network as a
glass.

We tested this hypothesis by constructing artificial images imbued with five-fold symmetry as
follows. First, we placed 1,512 (35% of 4,320) type B particles in a grid, evenly spaced, with the x-
and y-axes ranging from O to 1. Each particle was then given a slight random displacement in the
x- and y-directions from their initial placements, corresponding to a uniform random number in
the range -1/195 to 1/195. These specific random displacement values were determined by visual
inspection and trial and error. We then selected 500 of these type B particles to surround with pen-
tagonal arrangements of type A (orange) particles. To attempt to replicate the five-fold symmetry
clustering effect described in Hu et al., we added pentagonal arrangements around type B particles
iteratively and selected each subsequent type B particle to be a neighbor of a previously selected
particle with a probability of 3/4* Every time a pentagonal arrangement of type A particles was
placed, we arranged the particles to be at a radial distance of 1/78 from the central type B particle
and gave the pentagonal arrangement a random angular rotation selected uniformly from the range
—27 to 2. For any pair of particles within a distance of 1/90 of each other, we removed one of
the particles to prevent overlaps. Figure @(a) shows a representative image of the result.

The remainder of the type A particles are filled in randomly, again avoiding any overlaps, to
produce a final result, shown in [d[(b). We again used the dataset 1 network to classify several
hundred examples of these artificial images. However, all of them were classified as liquids. We
also constructed images with other n-fold symmetries and with random configurations of particles,

but all were classified as liquids.

V. CNN AND D-MPNN CLASSIFICATION RESULTS

Figure [5| shows accuracy results for CNNs and D-MPNNG.
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Figure 4: (a) Initial artificial pentagonal arrangements of type A and type B particles. (b) Final artificial

five-fold symmetry configuration.
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Figure 5: CNN and D-MPNN average classification accuracy for datasets 1 through 6 with error bars
showing standard deviation. These average values were computed using the three-fold nested

cross-validation scheme described in §2.5 in the main text.

VI. D-MPNN SELF-ATTENTION

Figure [6] shows self-attention visualizations for configurations in an outer test set of dataset 1
with [,,;, = 0.3. High attention edges were determined with a hard cutoff; upon inspection, there
was a clear trough in the distribution of attention weights that separated those with small, almost
negligible magnitudes and those with larger magnitudes. Figure [7]shows the graph-based metrics

from Figure 10 in the main text plotted individually as a function of temperature.
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Figure 6: Self-attention visualizations, with the attention weights computed on the 7 — 17

step of
message passing. All connected particles in the graph are joined with a green line whose width is
proportional to the magnitude of the attention weight. Note that each connected pair of particles actually

has two edges, because the graph is directed. Here, we visualize the edge with the higher weight. (a) Glass

configuration with /,,;, = 0.3. (b) Liquid configuration with /,,;, = 0.3.

VII. TRAINING TIME

We trained the CNNs and D-MPNNs and performed hyperparameter optimization on NVIDIA
Tesla V100 GPUs using Amazon Web Services. The training time for CNNs was consistently
less than 7.5 milliseconds per data sample regardless of batch size, while the training time for
D-MPNNs ranged from approximately 28 milliseconds to 260 milliseconds per data sample, de-
pending on the values of the hyperparameters. Since one epoch of training corresponded to 16,000
data samples, the training time per epoch for CNNs was less than 2 minutes, while the training
time per epoch for D-MPNNs ranged from approximately 7.5 minutes to 70 minutes. Since we
trained each model for 10 epochs, training a CNN took approximately 20 minutes while training a
D-MPNN ranged from approximately 75 minutes to 6.5 hours. Figure [§|shows D-MPNN training
time for three representative sets of hyperparameters as a function of system size, which we varied
by using different values of /,,;, while keeping all other hyperparameters fixed. We also found
that including the self-attention step during training did not significantly increase training time.
For example, including the self-attention step for the model II network described in Figure [§| with
lyin = 0.4 increased the average training time from 31.38 min. to 32.58 min. The time to perform
inference (predicting liquid versus glass), much less than the time for training, was less than 5

milliseconds per data sample for the CNN and ranged from approximately 30 milliseconds to 150
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Figure 7: Average number of isolated type A particles (a), edges connecting pairs of type B particles,
(b), and number of disjoint graphs (c) in configurations from simulations with #.,,; = 2 X 107 at a variety
of temperatures. The dotted orange lines show predictions from the linear regression models for each of
these curves, as described in §3 in the main text. The segments of the linear models above and below T,

are artificially extended to visually highlight the difference in slopes above and below 7.

milliseconds for the D-MPNNs, depending on values of the hyperparameters.
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Figure 8: Training time for three representative sets of hyperparameters as a function of /,,;;, (window
length). Model I used k = 1 nearest neighbors, 2 = 300 hidden size, 7 = 2 message passing steps, f = 1
feedforward layer, p = 0.5 dropout probability, and n;, = 5 batch size, which is the smallest model
obtainable from the range of hyperparameters that we used during hyperparameter optimization. Model 11
used k = 3 nearest neighbors, 2 = 1000 hidden size, 7 = 4 message passing steps, f = 2 feedforward
layers, p = 0.5 dropout probability, and n;, = 5 batch size. Model III used k = 5 nearest neighbors,

h = 2400 hidden size, T = 6 message passing steps, f = 3 feedforward layers, p = 0.5 dropout
probability, and n;, = 5 batch size, which is the largest model obtainable from the range of hyperparameters
that we used during hyperparameter optimization. For each model at a given value of /,,;,, we report the
average training time in minutes on an outer train set of dataset 1 in three independent trials. Standard

deviations of training time, not shown here, were less than 1 minute.
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