Formation of nematic order in 3D systems of hard colloidal ellipsoids

Supplementary Information

Jörg Roller,^a John Geiger, ^a Markus Voggenreiter, ^a Janne-Mieke Meijer, ^{b,c} and Andreas Zumbusch ^a

^a Department of Chemistry, University of Konstanz, Konstanz, Germany

^b Department of Physics, University of Konstanz, Konstanz, Germany

^c University of Amsterdam, Amsterdam, The Netherlands

Bond order analysis

As described in the main text, we performed a bond order analysis for our data. For this we calculated the order parameter q_4 and q_6 that identify 4-fold and 6-fold symmetries in the 3D positions, following the literature [1].

In figure S1 the data for q_4 and q_6 are shown for the highest achieved volume fraction φ for samples with different aspect ratio a/b. The low values for q_4 and q_6 indicate the absence of crystalline order, since e.g. FCC (face center cubic) and HCP (hexagonal close packing) structures would have high q_6 values (q_6 >0.5) and a SC (simple cubic) structure would result in high q_4 values (q_4 >0.7).

Fig. S1 Result for q4 and q6 of the bond order analysis for the densest samples of different aspect ratio a/b show the absence of crystalline order in each sample.

References

[1] P.J. Steinhardt, D.R. Nelson and M. Ronchetti, Physical Review B, 1983, 28, 784-805