Supplementary Information

Viscoelasticity in associating oligomers and polymers: experimental test of the bond lifetime renormalization model

Sirui Ge¹[†], Martin Tress²[†], Kunyue Xing², Peng-Fei Cao³, Tomonori Saito³, and Alexei P. Sokolov^{2, 3*} [[†]] The two authors contributed equally to this work.

[*] Corresponding author: Alexei P. Sokolov (sokolov@utk.edu)

¹ University of Tennessee, Knoxville, Department of Materials Science, Knoxville, Tennessee 37996, United States

² University of Tennessee, Knoxville, Department of Chemistry, Knoxville, Tennessee 37996, United States

³ Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee 37831, United States

Figure S1: ¹H NMR spectra of vinyl-terminated PDMS with DP = 83.

Figure S2: ¹H NMR spectra of PDMS-S-COOH-83.

Figure S3: Dielectric loss spectra of PDMS-NH₂ with a *DP* of (a) 22, (b) 50, and (c) 74. Taken from [1].

Figure S4: Dielectric loss spectra of PPG-NH₂ with a DP of (a) 6, 8b) 33, and (c) 67 as well as of PPG-COOH with a DP of (d) 6, (e) 33, and (f) 67. Taken from [2].

Figure S5: Shear modulus master curves constructed from linear viscoelastic spectra using tTS for PPG-COOH with (a) DP = 6, (b) DP = 33 and (c) DP = 67, and the respective shift parameters (d-f). Modified after [2].

Figure S6: Master curves constructed from linear viscoelastic spectra using TTS for PDMS-NH₂ with (a) DP = 22 ($T_{ref} = 151$ K), (b) DP = 50 ($T_{ref} = 149$ K), (c) DP = 74 ($T_{ref} = 148$). The master curves were shifted horizontally to match their α -relaxation peak positions and cut at low frequencies due to the onset of crystallization. The temperature dependence of the horizontal shift factors α_{T} employed for the TTS is given for (d) DP = 22, (e) DP = 50 and (f) DP = 74. Modified after [1].

Figure S7: (a) Dielectric permittivity derivative spectra of PPG-NH₂-67 for different temperatures as indicated as well as respective fit functions composed of two (dashed red lines) and three (dotted blue lines) Havriliak-Negami functions. (b) Close-up of the minimum region inbetween the two relaxation peaks of the same data sets (identical symbol assignment as in (a)); the arrows indicate the location of the biggest deviation between the data and the best-fit using two Havriliak-Negami functions which suggests the presence of a third process.

References

1. Xing, K.; Tress, M.; Cao, P.; Cheng, S.; Saito, T.; Novikov, V. N.; Sokolov, A. P. Hydrogen-bond strength changes network dynamics in associating telechelic PDMS. *Soft Matter* **2018**, 14, 1235-1246. 2. Xing, K.; Tress, M.; Cao, P.-F.; Fan, F.; Cheng, S.; Saito, T.; Sokolov, A. P. The Role of Chain-End Association Lifetime in Segmental and Chain Dynamics of Telechelic Polymers. *Macromolecules* **2018**, 51 (21), 8561-8573.