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Swelling behavior of a pNIPMAM-pNNPAM microgel

Figure S1: Swelling curve of a H-pNIPMAM D7-pNNPAM core-shell microgel with a CCC of 5 mol% measured in 
water by PCS.

Possible models for core-shell geometries

Core and core-shell geometries have been described in the literature and reviewed by us in a previous 

article,1 Figure 9.They include box profiles, fuzzy interfaces, the thermodynamic Boon-Schurtenberger 

model, and the multi-shell approach of Pedersen and ourselves.  

For core shells, the simplest shell geometry is the hollow sphere geometry shown in Figure S2. By volume 

conservation of monomers, the constant density in the shell is directly related to its volume (which itself 

depends on the thickness), the product must be constant. From the one-dimensional density profile, the 

scattered intensity I(q) can be found using the corresponding 3D Fourier transform for spherical symmetry, 

if the concentration is low and known, as detailed in our previous article,1 relating the volume fraction 

profile to the scattering length density:

𝜌(𝑟) = 𝜌𝑀𝑜𝑛𝑜 ∙ Φ(𝑟) + 𝜌𝑆𝑜𝑙𝑣 ∙ (1 ‒ Φ(𝑟))
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This confers contrast to the microgel in the solvent, Δρ(r) = ρ(r) – ρSolv, and gives rise to the scattered 

intensity I(q):

𝐼(𝑞,𝑟) =
𝑁
𝑉[∫4𝜋𝑟2Δ𝜌(𝑟)

𝑠𝑖𝑛(𝑞𝑟)
𝑞𝑟

𝑑𝑟]2
Here N/V is the number of microgels per volume chosen to satisfy the concentration of monomer volume. 

In our reverse Monte-Carlo (RMC) implementation, we translate the last equation into a discrete sum over 

the shells, with the radial variable r given by the number of the shell i, thus the outer radius of each shell r(i) 

= iΔR:

𝐼𝑅𝑀𝐶(𝑞,𝑟,𝑛) =

𝑁𝑝

∑
𝑖= 1

𝑁
𝑉[4𝜋3 𝑟(𝑖)3(Δ𝜌(𝑖) ‒ Δ𝜌(𝑖+ 1))3

𝑠𝑖𝑛(𝑞𝑟) ‒ 𝑞𝑟𝑐𝑜𝑠(𝑞𝑟)

(𝑞𝑟)3 ]2
Here Δρ(i) is the scattering length contrast of shell i, and the contrast of the surrounding solvent shell 

(Np+1) is set to zero.Δ𝜌

Coming back to the hollow sphere and by definition of the radius of gyration, which under spherical 

symmetry is an integral weighting the local density, Rg must lie between the inner and the outer radius, see 

Figure S2. This simple geometrical argument allows us to exclude this geometry by comparison with the 

experimentally observed Guinier domain. 

Figure S2: Geometry of a hollow shell with the inner radius (Rin), outer radius (Rout) and approximately the radius of 
gyration (Rg).

The idea of the modeling part associated with Figure 2 was to propose the following ‘educated guesses’ for 

the geometry (and thus density profile), calculate the corresponding I(q), and confront it with the experiment 
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in Figure 2a. The result was that all ‘intuitive’ shell models fail, and the centered ones approach the true 

geometry.

Core-Shell: Shell polymer located just outside the known core profile (decaying at 28 nm) with a maximum 

total density identical to the one of the core, thus setting the thickness by shell monomer volume 

conservation.

Φshell(r) = 0 (r<28nm)

Φshell(r) = Φcore(max) (r)- Φcore    (r)(r>28 nm)

Φshell(r) = 0 (outside set by volume conservation)

Shell-IPN: This ad-hoc model is similar to the core-shell model with an increased interpenetration into the 

core producing smaller shells, in order to see if a better agreement with experimental intensity (Figure 2a) 

is obtained. This is the case but it is not sufficient to describe the data. The density profile obeys the same 

equation as the core-shell model above, with the 28 nm internal radius reduced to 10 nm. The agreement 

with the intensity is better but still not satisfactory.

Centered: Given the too big size of the above models as compared to the measurement, as many shell 

monomers as possible have been fit into the centre of the particle. Filling the remaining space with shell 

monomers, starting from the centre, setting the total volume fraction to Φ = 1, gives the following shell 

monomer volume fraction profile:

Φshell(r) = 1 – Φcore(r)  (r < radius set by volume conservation)

Φshell(r) = 0                 (r > radius set by volume conservation)

Note that the last (outmost) shell may be only partially filled with the remaining monomers defined by 

volume conservation. This explains the non-perfect steepness of this profile at the particle surface. 

High-q analysis
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The high-q slopes of the performed SANS measurements for different temperatures of a pNIPMAM-

pNNPAM core-shell particle in Figure 3 in the article are reported here. They indicate dominant shell chain 

scattering at low temperature in the swollen state, and dominant interface (close to Porod) scattering in the 

collapsed state, presumably with some remaining chain contributions.

Temperature Slope

15°C 1.5

30°C 4.0

35°C 3.8

40°C 3.6

55°C 3.2

Table S1: High-q slopes of H/D pNIPMAM-pNNPAM core-shell particles with matched core as a function of 

temperature, for core crosslinking of 10 mol%. 

Similarly, for the different cross-linker concentrations of the core and unchanged crosslinking of the shell 

(1.9 mol%) in Figure 4, we find at 55°C:

Core cross-linking Slope

5 mol% 2.2

10 mol% 3.2

15 mol% 2.7

Table S2: High-q slopes of H/D pNIPMAM-pNNPAM core-shell particles with matched core as a function of core 

crosslinking at 55°C. 

Radial core and shell monomer distribution
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Figure 4 in the main article shows the radial shell monomer density at 15, 35 and 55 °C. In Figure S3 r2Φ 

is plotted as a function of the radius r.

Figure S3: r2Φ as a function of the radius of the pNNPAM shell monomer density of a pNIPMAM-pNNPAM core 
shell microgel particle with a CCC of 10 mol% at different temperatures.
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