Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2019

Supplementary materials

Coupling effect of molecular weight and crosslinking kinetics on the formation of rubber nanoparticles and their agglomerates in EPDM/PP TPVs during dynamic vulcanization

Shangqing Li^{a, b}, Hongchi Tian^b, Hanguang Wu, Nanying Ning^{a, b, c*}, Ming Tian^{a, b, c*}, and Liqun Zhang^{a, b, c}

^a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology,

Beijing, China.

^b State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

° Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical

Technology, Beijing 100029, China.

* Corresponding authors. Tel.: 86 10 64456158; Fax: 86 10 64456158.

E-mail addresses: tianm@mail.buct.edu.cn (Prof. Tian) and ningny@mail.buct.edu.cn (Prof. Ning).

Table S1 Characteristic properties of pure polymers

Polymers	Trade mark	Characteristic properties of pure polymers							
		Density (g/cm³)	<i>MW</i> (g∙mol⁻¹)	<i>MFI</i> (g·10min ⁻¹)	<i>ML</i> ₍₁₊₄₎ 125 °C Pa ⁻¹ ·s ⁻¹	$T_m(^{\circ}\mathrm{C})$	Ethylene content	ENB content	
EPDM	3080L	1.02	~860,000	_	70		70%	3.5%	
РР	HP500D	0.91	~623,300	0.5	_	170	_	_	
РР	K1118	0.89	~271,900	7.8	_	160	_	_	

*At 230 °C and 2.16 kg; M_W : Molecular weight; *MFI*: Melt flow index; *ML*: Mooney viscosity; T_m : Melt temperature; ENB: 5-ethylidene-2-norbornene.

Table S2 Formulas of neat EPDM with various crosslinking systems for static curing characteristic.

Components	E/C ₁ /AC ₁ -1 (H _{CR} L _{CD})	E/C ₁ /AC ₁ -2 (H _{CR} M _{CD})	$E/C_2/AC_2(L_{CR}H_{CD})$
EPDM (g)	60	60	60
Phenolic resin (g)		_	1.12
$SnCl_2(g)$		_	0.2
TBPA (g)	0.62	1.86	—
TMPTMA (g)	0.27	0.81	—

Table S3

Different codes of

the five selected	Blends		Codes of the five selected samples during DV				samples for each
blend system	PH-L _{CR} H _{CD}	A_1^H	B_1^H	C_1^H	D_1^H	E_1^H	during DV
	PL-L _{CR} H _{CD}	A_1^L	B_1^L	C_1^L	D_1^L	E_1^L	
	PH-H _{CR} M _{CD}	A_2^H	B_2^H	C_2^H	D_2^H	E_2^H	
	$PL-H_{CR}M_{CD}$	A_2^L	B_2^L	C_2^L	D_2^L	E_2^L	
	PH-H _{CR} L _{CD}	A_3^H	B_3^H	C_3^H	D_3^H	E_3^H	
	PL-H _{CR} L _{CD}	A_3^L	B_3^L	C_3^L	D_3^L	E_3^L	

Fig. S1 Photographs of disintegration test of different EPDM/PP (60/40) blends obtained at various DV times in hot xylene at 120 °C: (a) PH-H_{CR}L_{CD}; (b) PL-H_{CR}L_{CD}.

Fig. S2 AFM images of EPDM/PH blends prepared at different crosslinking conditions under various DV times. (The darker regions represent PP phase, and the lighter regions represent EPDM rubber phases)

Fig. S3 Photographs of disintegration test of different EPDM/PP (60/40) blends obtained at various DV times in hot xylene at 120 °C: (a) PH-L_{CR}H_{CD}; (b) PH-H_{CR}M_{CD}; (c) PH-H_{CR}L_{CD}.