
Supplemental Material for “Generic Theory of the Dynamic

Magnetic Response of Ferrofluids”

Angbo Fang∗

North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Abstract

This supplementary material includes two parts. The first part shows a detailed derivation of the

magnetization relaxation equation for monodisperse ferrofluids, Eq. (3) in the main text. This is

achieved by employing the projection operator technique in nonequilibrium statistical mechanics.

The second part derives the generalized or anisotropic Debye equation and the dynamic magnetic

susceptibility for monodisperse ferrofluids under a static magnetic field and subject to a weak

probing AC field.
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I. DERIVATION OF MAGNETIZATION RELAXATION EQUATION

In this section we derive the magnetization relaxation equation (MRE) for monodisperse

ferrofluids, in the form of Eq. (3) in the main text. We follow Ref. [1]. Our starting point is

the Smoluchowski equation (SE), or Fokker-Planck-Smoluchowski (FPS) equation, Eq. (1) in

the main text. It describes the Brownian rotational motion of a rigid dipolar particle under

an external magnetic field and an effective dipolar field due to all other dipolar particles.

The stochastic variable e characterizing the orientational coordinate of a dipolar particle,

runs through a unit sphere Ωe defined by e21 + e22 + e23 = 1 in three-dimensional space. For

this reason, a spherical coordinate system is extensively used. However, for our purpose we

find it is more convenient to employ the Cartesian coordinate system, in which the SE is

recast into the following form:

∂

∂t
W (e, t) = − ∂

∂ei
Mij(e)

[
∂F c(e)

∂ej
+ kBT

∂

∂ej

]
W (e, t), (1)

where

Mij =
Dr

kBT
(δij − eiej), (2)

is the mobility matrix, with Dr ≡ 1/2τr the rotational self-diffusion constant. In this

supplemental material summation over repeated index is always implied. We also make the

vacuum magnetic permeability µ0 implicit, without causing any confusions because it can

always be absorbed into the thermal energy , just like we do in the main text.

In Eq. (1) F c is the nonequilibrium configurational free energy functional:

F c(e) = −µe ·
[
H +Hdd

]
, (3)

which describes the energetic part of the single-particle chemical potential. The nonequilib-

rium mean dipolar field Hdd ≡ HL
e −He is determined by Eq. (2) in the main text, with

HL
e and He respectively the nonequilibrium Langevin effective field and thermodynamic

effective field associated with the instantaneous magnetization, M (t). The two effective

fields points along the same direction as M (t).

For convenience, we denote ξLe = µHL
e /kBT and ξe = µHe/kBT as the dimensionless

effective fields. Given a magnetization curve specified by a dimensionless function G, we have

L(ξLe ) = G(ξe), where L(x) = coth x−1/x is the dimensionless Langevin function. Therefore,

for an external magnetic field H (with ξ = µH/kBT its dimensionless counterpart), we
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can also associate it with an auxiliary Langevin field by ξL = L−1(G(ξ))ξ/ξ and HL ≡

(kBT/µ)ξ
L.

The dimenesionless instantaneous magnetization is given by

m(t) ≡ M (t)/ρµ =

∫
Ωe

eW (e, t)dΩe, (4)

just the first-order moment of W (e, t).

If H is a static field, the equilibrium distribution function W0(ξ, e) is determined by

the Gibbs-Boltzmann distribution function ∼ exp(−F c
0/kBT ), where F c

0 ≡ limξe→ξ F
c =

−µe ·HL is the equilibrium configurational free energy. After normalization we obtain

W0(ξ, e) =
ξL

4π sinh ξL
exp(ξL · e), (5)

which, in the noninteracting limit with ξL → ξ, reduces to Langevin’s result for an ideal

paramagnetic gas. Eq. (5) leads to the equilibrium magnetization curve specified by M0 =

ρµL(ξL) ≡ G(ξ), thereby verifying the self-consistency of our proposed form for Hdd.

Of central importance is the generalized canonical distribution function, which maxi-

mizes the information entropy for all the nonequilibrium distribution functions satisfying

the instantaneous macroscopic constraints. It is of the following form:

W̃ (e, t) = Z̃−1 exp [−F c/kBT + h(t) · e] , (6)

where Z̃ is the normalization factor and h is a vectorial parameter that parameterizes the

nonequilibrium thermodynamic force. It is determined by the macroscopic constraint∫
Ωe

eW̃ (e, t)dΩe = m(t), (7)

from which we deduce h = ξe − ξ. Therefore, we have W̃ (e, t) = W0(ξ
L
e (t), e).

To progress, we rewrite the SE (1) in a compact form

∂

∂t
W (e, t) = −iLW (e, t), (8)

with L the FPS operator defined by

−iLY (e) = − ∂

∂ei
Ki(e)Y (e) +

∂2

∂ei∂ej
Dij(e)Y (e). (9)

for an arbitrary distribution function Y (e) defined on Ωe. In Eq. (9) Ki is the FPS drift

Ki(e) = Dr

[
−2ei + ξ̃i − ei(ξ̃kek)

]
(10)
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with ξ̃ = ξ + ξLe − ξe, and D is the diffusion matrix with

Dij(e) = Dr(δij − eiej). (11)

To derive the equation of motion for m in closed form, we need to extract the relevant

macroscopic information from the SE. This can be achieved via the projection operator

technique in nonequilibrium statistical mechanics [2], first introduced by Zwanzig [3].

For this purpose we introduce a projection operator P(t) by

P(t)Y (e) = W̃ (e, t)

∫
dΩeY (e) +

∂W̃ (e, t)

∂ej

∫
dΩe[ej −mj(t)]Y (e) (12)

for an arbitrary Y (e). Obviously, P(t) projects out W (e, t) to its relevant part:

P(t)W (e, t) = W̃ (e, t). (13)

The initial distribution function is determined by our experimental preparation and usu-

ally assumes the form W (e, 0) = W̃ (e, 0), describing an equilibrium state with a definite

macroscopic magnetization. Utilizing the properties of P(t), we obtain

W (e, t) = W̃ (e, t)−
∫ t

0

dsG(t, s) [1− P(s)] iLW̃ (e, s), (14)

with

G(t, s) = T+ exp

(
−
∫ t

s

du [1− P(u)] iL
)

(15)

in which T+ denotes operators are ordered from right to left as time increases. Hence, the

time rates of change for mi(t) ≡
∫
Ωe

eiW (e, t)dΩe =
∫
Ωe

eiW̃ (e, t)dΩe can be obtained as

ṁi(t) =

∫
Ωe

dΩeKi(e)W̃ (e, t)−
∫ t

0

ds

∫
Ωe

dΩeKi(e)G(t, s) [1−P(s)] iLW̃ (e, s), (16)

Eq. (16) is a closed equation for the evolution of mi(t), because W̃ (e, t), P (t), and G(t, s)

can be explicitly expressed in terms of mi(t). We can further recast Eq. (16) in a standard

form of nonequilibrium thermodynamics, i. e., expressing its right-hand side in terms of

thermodynamic driving forces h(t) ≡ ξ − ξe multiplied by transport coefficients. First, we

write ∫
dΩeKi(e)W̃ (e, t) = M̃ij(t)hj(t), (17)

with the renormalized mobility matrix defined by

M̃ij(t) =

∫
dΩe W̃ (e, t)Mij(e). (18)
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Second, noting that

−iLW̃ (e, t) =
∂

∂ei
Mij(e)W̃ (e, t)hj(t), (19)

we have ∫
dΩeKi(e)G(t, s) [1−P(s)] iLW̃ (e, s) = Λij(t, s)hj(s), (20)

where

Λij(t, s) = −
∫

dΩeKi(e)G(t, s) [1− P(s)]
∂

∂ek
MkjW̃ (e, s). (21)

Using Eqs. (17) and (20), the equation of motion (16) is recast into

ṁi(t) = −M̃ij(t)hj(t)−
∫ t

0

dsΛij(t, s)hj(s). (22)

Here, the first term on the right hand side describes the instantaneous reaction of mi to

the corresponding thermodynamic force (−h ≡ ξ − ξe), while the second term represents

a retarded response due to forces in the past. The memory kernel Λij(t, s) describes the

coupling of ṁ to the mesoscopic fluctuations of high-order moments of the distribution

function. These are supposed to decay in a time much shorter than the time scale for an

appreciable change of mi. Therefore, the retardation effect may be discarded if we are

interested in the dynamics on a sufficiently slow time scale that validates m as the sole slow

variable. Hence, we have the following instantaneous response equation:

ṁi(t) = −M̃ij(t)hj(t), (23)

which is in Onsager’s standard form. However, the transport coefficients, M̃ij, is in general

time-dependent through its dependence on m(t).

The instantaneous transport coefficients M̃ij(t) can be calculated by substituting into

Eq. (18) the expressions for Mij and W̃ , respectively . To perform integration over the

domain of e, we set up a spherical coordinate system with the polar axis pointing along the

direction ofm(t) or ξLe (t). Then we write ξLe (t) = ξLe (1, 0, 0) and parameterize e = (e1, e2, e3)

with (cos θ, sinθ cosϕ, sin θ sinϕ) (0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π). We thus have

M̃ij(t) =
Dr

kBT

∫ 2π

0

dϕ

∫ π

0

sin θdθ (δij − eiej)
ξLe

4π sinh ξLe
exp(ξLe cos θ), (24)

from which we deduce that the transport matrix is of the following diagonal form:

M̃(t) =
2Dr

kBT


γ∥ 0 0

0 γ⊥ 0

0 0 γ⊥

 , (25)
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with the longitudinal coefficient

γ∥ = L(ξLe )/ξ
L
e (26)

and the transverse coefficient

γ⊥ =
1

2

[
1− L(ξLe )/ξ

L
e

]
. (27)

Notably, due to e21 + e22 + e23 = 1, we have trM̃ = trM = 2Dr/kBT so that

γ∥ + 2γ⊥ = 1. (28)

Arising from symmetry properties of the diffusion matrix, such a general relation between the

longitudinal and transverse transport coefficients holds irrespective of microscopic details.

It should be noted that the longitudinal and transverse components are defined with

respective to the direction of the instantaneous magnetization M (t) = ρµm(t). This is

the “canonical decomposition” in the framework of nonequilibrium thermodynamics for an

anisotropic thermodynamic state characterized by M (t).

To this end, we may write down the vectorial magnetization relaxation equation for M ,

which reads

τr
dM

dt
= γ∥3χL [H −He]∥ + γ⊥3χL [H −He]⊥ , (29)

exactly in the same form as Eq. (3) in the main text.

II. DYNAMIC SUSCEPTIBILITY AT FINITE STATIC MAGNETIC FIELD

The MRE (29) is nonlinear with respect to the instantaneous magnetization, arising

from both the equation of state and transport coefficients. In some situations, e. g., in the

simultaneous presence of a large constant field and a tiny time-independent field, it may be

reduced to a mathematically simpler form.

In the regime defined by |ξe − ξ| ≪ 1, the magnetization relaxes in the neighborhood

of a hypothetical quasi-equilibrium state sustained by the external magnetic field H . This

hypothetical quasi-equilibrium state is described by the magnetization MH = ρµG(ξ)H/H,

which may be time-dependent if H is. Treating ν ≡ ξe(t)− ξ as a small parameter we can

simplify our MRE (29) to the first order of ν.

To proceed, we notice that [4, 5], to the first order of ν,

ξe = ξ +
ν · ξ
ξ

,
ξe
ξe

=
ξ

ξ
+

ξ × (ν × ξ)

ξ3
(30)
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and

G(ξe) = G(ξ) +
ν · ξ
ξ

dG(ξ)

dξ
, (31)

with which we can express the driving force ν linearly in terms of M − MH . On the

other hand, we can simply replace the state-dependent transport coefficients at M by their

corresponding values at MH .

Using Eqs. (30) and (31), after some algebra we obtain the following anisotropic Debye

equation [Eq. (4) in the main text]:

dM

dt
= −

(M ∥ −MH)

τ∥
− M⊥

τ⊥
, (32)

where M ∥,⊥ denotes the components of M parallel or perpendicular to H , respectively,

while τ∥ and τ⊥ are the corresponding field-dependent relaxation times:

τ∥(ξ)

τr
=

dξL

dξ

d lnL(ξL)

d ln ξL
;
τ⊥(ξ)

τr
=

ξL

ξ

2L(ξL)

ξL − L(ξL)
. (33)

Now, suppose the total external magnetic field H(t) is comprised of a static uniform field

H0 = H0e∥ and a probing AC field H exp(iωt) = H exp(iωt)e∥,⊥. The AC field can be

either parallel (along e∥) or perpendicular (along e⊥) to H0.

In the longitudinal (parallel) situation, the instantaneous magnetizationM (t) keeps along

the e∥ axis and the dimensionless magnetic field is ξ = ξ0 + h exp(iωt), with h = µH/kBT .

Thus we have
dm(t)

dt
= −m(t)−mH

τ∥(ξ)
, (34)

in which mH ≡ MH/ρµ = G(ξ) is the (dimensionless) magnetization for the instantaneous

hypothetical quasi-equilibrium state. With h ≪ ξ0 we may replace τ∥(ξ) with τ∥(ξ0) and

write

mH = G(ξ0) +
dG(ξ0)

dξ0
h exp(iωt), (35)

to the first order of h/ξ0. On the other hand, the instantaneous nonequilibrium magnetiza-

tion assumes the following form:

m(t) = G(ξ0) +
χ∥(ω, ξ0)

3χL

h exp(iωt), (36)

where χ∥ is the longitudinal frequency-dependent susceptibility, also depending on the static

magnetic field strength.
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We substitute Eqs. (35) and (36) into Eq. (34) and obtain

χ∥(ω, ξ0) =
χL

1 + iωτ∥(ξ0)

3dG(ξ0)

dξ0
≡

χ0
∥(ξ0)

1 + iωτ∥(ξ0)
, (37)

where χ0
∥(ξ0) ≡ χ∥(0, ξ0) = 3χLdG(ξ0)/dξ0 is the finite-field static (zero-frequency) suscepti-

bility along the direction (e∥) parallel to H . Thus the peak frequency of the imaginary-part

susceptibility spectra lies at τ−1
∥ (ξ0).

In the transverse (perpendicular) situation, the total magnetic field is specified by ξ =

ξ0e∥ + h exp(iωt)e⊥. Thus ξ = ξ0 +O((h/ξ0)
2). To the first order of h/ξ0, we have

mH = G(ξ0) [e∥ + (h/ξ0) exp(iωt)e⊥ ] (38)

as the (dimensionless) magnetization of the hypothetical quasi-equilibrium state.

On the other hand, the true instantaneous nonequilibrium magnetization assumes the

following form:

m(t) = G(ξ0)e∥ +
χ⊥(ω, ξ0)

3χL

h exp(iωt)e⊥, (39)

where χ⊥ is the transverse frequency-dependent susceptibility, also depending on the static

magnetic field strength.

Now, we substitute Eqs. (38) and (39) into Eq. (32) and find the longitudinal relaxation

is of higher order and we are left with the transverse relaxation. We obtain

χ⊥(ω, ξ0) =
χL

1 + iωτ⊥(ξ0)

3G(ξ0)

ξ0
≡ χ0

⊥(ξ0)

1 + iωτ⊥(ξ0)
, (40)

where χ0
⊥(ξ0) ≡ χ⊥(0, ξ0) = 3χLG(ξ0)/ξ0 is the finite-field static (zero-frequency) magnetic

susceptibility along the direction (e⊥) perpendicular to H . Similar to the longitudinal case,

the peak frequency of the imaginary-part susceptibility spectra lies at τ−1
⊥ (ξ0).

It is amazing that our simple analytical expressions for the field-dependent dynamic

susceptibility spectra, Eqs. (37) and (40) along with Eq. (33), can quantitatively match the

corresponding results from Brownian dynamics simulations, for all the studied samples, with

different particle concentrations and interaction strength.
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