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ELECTRONIC SUPPLEMENTARY INFORMATION 

Neutron Spin Echo Spectroscopy Basics 
Neutron Spin Echo (NSE) spectroscopy detects the sum of coherent and incoherent scattering. 

Typically, the coherent part dominates which leads toS1  
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where 𝜎567 and 𝜎085 are the coherent and incoherent scattering cross-sections, respectively. The 

coherent and the incoherent intermediate scattering functions are represented by 𝑆(𝑄, 𝑡))*+ and 

𝑆(𝑄, 𝑡)21), respectively. 

           

The time dependent mean-squared displacement of randomly diffusing, infinitely small and 

massless particles can be written as (⟨	(𝑟0(0) − 𝑟0(𝑡))<⟩ = 6	𝐷	𝑡).S2 Assuming validity of the 

Gaussian approximation in the calculation of the time dependent incoherent dynamic structure 

factor, 𝑆(𝑄, 𝑡)21)@A , we arrive at the well-known expressionS2  

Equation S2 implicitly includes 𝑁 particles randomly diffusion independently of each other.  

 

In a next step, we exploit the fact that the pair-correlation function can be separated into inter- and 

intermolecular contributions. In case of dilute solutions which implies uncorrelated motion, the 

intermolecular contributions can be neglected.S1,S2 Since we assume non-interacting, infinitely 

small and massless particles the intramolecular interactions can be ignored.S1,S2. In this or in the 

 𝑆(𝑄, 𝑡)21)@A = 𝑁 exp(−𝑄<𝐷FGG𝑡) (S2) 
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more general case, of objects with finite dimensions, center of mass diffusion and a separation 

ansatz, e.g., to separate rotational motion, can be utilized to derive the coherent dynamic structure 

factor, 𝑆(𝑄, 𝑡))*+@A ,   

 𝑆(𝑄, 𝑡))*+@A ∝ 𝑁 exp(−𝑄<𝐷FGG𝑡) (S3) 

Eqs. S2 and S3 illustrate the more general principle that the coherent dynamic structure factor 

contains pair- and self-correlation contributions. In those cases, when objects move independently 

the self-correlation part in 𝑆(𝑄, 𝑡))*+ has the same form as in the respective part in 𝑆(𝑄, 𝑡)21).  

Different Illustrations of the Results 

 

Figure S1: Log-log representations of the normalized intermediate scattering function, S(Q,t)/S(Q), as a 

function of Fourier time, t, for different Q’s, for, (a,d) 5 % lipid mass fraction of protonated DOPC at 20°C, 

(b,e) 5 % lipid mass fraction of protonated DMPC at 37°C  and (c,f) the 5 % lipid mass fraction of 

protonated Soy-PC sample at 30°C, all in D2O. The same data sets are analyzed by fits using the (a-c) 

Zilman-Granek model (ZG) (equation 5) and (d-f) the full model that starts from equation 3 and includes 

diffusion of liposomes and confined motion of lipid tails (equation 10). The error bars representing one 

standard deviation. 



 

Figure S2: The 𝒜(Q) for h-DMPC obtained from NSE and QENS studies, over a broad Q-range. The data 

is modelled using 𝒜(Q) for a particle diffusion in a cylinder. 
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