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I: Theoretical derivation of single horseshoe structure under axial force, shear force and 

moment 

The axial force N , the shear force Q  and the bending moment M at any cross section, and they 

can be calculated by following equations: 

 d d,  (1 ) ,
d d

N EA M EI EI
s S
ϕ ϕε ε= = + =  (1) 

with Young’s modulus E , the cross-section area A  ( A w d= ⋅ ) of the modified horseshoe microstructure, 

and the second area moment I  ( 3 12I w d= ). d represents the thickness of the structure in Z direction. The 

axial force N , the shear force Q  and the bending moment M satisfy the following equilibrium equations: 

 d d d0,  0,  .
d d d
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s r r s s
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Based on the loading condition shown in Fig. 3(c), the axial and shear forces can be calculated as: 

 cos sin ,  sin cos .x y x yN F F Q F Fθ θ θ θ= + = −  (3) 

Substituting Eqs. (2) and (3) into Eqs. (1), ε  and 2 2d dSϕ  can be rewritten as: 
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In the undeformed arc, d dS=R α  and 2 2 2 2
2

1d d d dS
R

ϕ ϕ α= ⋅ . Therefore, we have 
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By using the relation 
2

2
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  =  
, Eq. (5) can be rearanged as: 
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Conducting integration on both sides, ( )2d dθ α  can be calculated as: 
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where C is a constant to be determined by boundary conditions. 

As shown in Fig. 3(c), the moment at θ γ=  can be balanced by the moments generated by xF  and yF  at 

the left end of the half modified horseshoe microstructure: 

 ( sin ) ( cos )x y y xM F L l F L l
θ γ

β β
=
= − + − + , (8) 



where xl  and yl  are the distance between the two ends of the deformed arc in the x and y directions. 

Because =ϕ θ α− , d dS=R α  and ( )d 1 ds= Sε+ , d dsϕ  can be calculated as: 
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Therefore, the bending moment M  in Eq. (1) can be expressed in terms of d dθ α : 
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d dθ α  can then be expressed as: 
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Based on the boundary condition in Eq. (8), 
=

d d
θ γ

θ α  can be computed: 
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Substituting Eq. (12) into Eq. (7), the constant C  can be calculated as: 
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where C  is a function of two unknowns, xl  and yl . Thus, based on Eq. (7), d dθ α  can be computed as: 
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After rearranging the first equation in Eq. (14), one can integrate the rearranged equation on both sides: 
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The horizontal and vertical distances xl  and yl  can be calculated as cos dxl sθ= ∫  and sin dyl sθ= ∫ . 

Recall that ( )d 1 ds Sε= + , d dS=R α , and ( )d d , ,x yf l lα θ θ= , therefore xl  and yl  can be computed as 
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Here, based on Eq. (4), ( cos sin ) /x yF F EAε θ θ= − + . In addition, the geometric compatibility requires: 

 sin sin 0yL L lβ γ+ + = . (18) 

By using the four equations Eqs. (15)-(18), the four unknown , , ,x yl lβ γ  can be solved. 

 

II: Turning of the theoretically predicted stress-strain curve 

It should be noted that in Fig 5a, the theoretical curve can only predict the deformation of the 
rectangular horseshoe lattice as the strain < ~150%, as shown in the following figure. After the 
stress reaches a critical value cσ , the theoretical model predicts that the periodical unit will tend 
to rotate to resist the increasing stress (shown by the inset figures). The strain will decrease instead 
with increasing stress. However, the experiments were conducted under strain control mode and 
exceeding rotation of the unit is limited due to the constraints on the transverse direction. Thus 
large discrepancy exists between experiments and theoretical modeling after cσ σ> . This 
behavior has not been found in the theoretical modeling of the triangular lattice structure. 

  

Fig. S1. Theoretical predicted stress-strain curve for the rectangular lattice structure.   
 



III: Bonding between the lattice and hydrogel 

From our experimental results, we found that the fabricated hydrogels with 3D printed lattice 
structures break in the hydrogel region rather than at the interface after being stretched, suggesting 
that the interface between the hydrogel and the lattice structures is reasonably tough. So we believe 
that water molecules do not decrease the bonding strength between reinforcement lattice and 
hydrogel matrix. We attribute the strong interfacial bonding to covalent bonds between the 
hydrogels and VeroCyan as shown by the following figure. The surfaces of the printed lattice 
structures still have unreacted acrylate-based monomers, which covalently bond the unreacted 
double bonds on acrylamide or PEGDA in the hydrogel precursor upon UV irradiation. 

 

Fig. S2. The proposed bonding mechanism between hydrogel and VeroCyan. 

 

 

 

 

 

 

 

 

 

 

 

 

 


