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Supplementary Note 1: Surface diffraction grating model. 

The striations that form the surface grating of Fig. 1f are the inner boundary of a slanted 

(almost to 90°) volume phase holographic grating1-4 composed from the fibres observed in 

figure 2d and figure 3. Here, we show that the Hynobius egg sac optical response (Fig. 4 

and Fig. S1) can be quantitatively explained by a simple model of a surface diffraction 

grating. The figure S2a schematically illustrates the path that light travels in a backscattered 

geometry. The egg sac envelope has an average refractive index n2=1.38, i.e., larger than 

that of water (n1=1.33). The backscattered wavelength is derived from the grating equation: 

𝜆 = 𝑑 ∙ 𝑛& ∙ 2 ∙ sin 𝜃,     Eq. 1 
 

where n2 is the refractive index of the egg sac’s material, λ is the light wavelength, and d is 

the diffraction grating period. Considering that the thickness of the egg envelop is small 

compared to the egg radius, we can reasonably assume that 𝜃,~𝜃&. Using Snell’s law at the 

interface between the external medium and the egg envelope 

 

𝑛. ∙ sin 𝜃. =𝑛& ∙ sin 𝜃& = 𝑛& ∙ sin 𝜃,  Eq. 2 

 

equation 1 becomes: 

 
𝜆 = 𝑑 ∙ 𝑛. ∙ 2 ∙ sin 𝜃.     Eq. 3 
 
 
where n1 is the refractive index of water or air (depending if the egg sac is submerged or 
removed out of the water, respectively). 

 We can now compute the colour distribution along the egg sac’s circumference (Fig. 
S2b). In the optical experiments (Fig. 4), the incident light angle relative to the egg sac 
surface (θ1) changes along the egg sac curvature from nearly 0° at the centre towards 
grazing incidence at the edges. Equation 3 can be modified such that sin θ1 is substituted 
with x/R (where x is the distance from the centre of the sac to the outer or the inner edge, 
and R is the egg sac’s radius) to give: 

𝜆 = 2 ∙ 𝑑 ∙ 𝑛. ∙
/
0
       Eq. 4 

 

The egg sac’s radius is 1 cm, so the value of x varies from 0 cm to 1 cm or -1cm when 
moving from the centre towards the outer or inner edge, respectively (Fig. S2b). In water, 
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the outer curvature of the egg sac (x=-1) is mostly green-blue (Fig. 4a), and matches with 
the colour distribution computed with equation 4 when the diffraction grating period is 190 
nm (Fig. S2b), while the colours on the inner curvature span a larger range of wavelengths 
from yellow to blue (Fig. 4c) and correspond to a larger diffraction grating period of 230 nm. 
The model (Fig. S2b) also predicts that removing the egg sac from water causes a blue shift 
resulting in the loss of essentially all colours in the visible range at the outer curvature, 
whereas some blue iridescence is maintained at the very edge of the inner curvature. These 
results match the experimental data (Fig. 4). 
 The different diffraction grating periods at the outer and inner curvature of the egg 
sac could result from the former being more stretched than the latter because of the crescent 
shape of the sac: the fibres at the outer curvature might become thinner and closer packed 
due to the stretch along the Z-axis while, at the inner curvature, they would become thicker 
and more distant because of compression along the Z-axis. 
 
 

 

Supplementary Figure S1. The iridescence of the egg sac in water at different angles of 
observation β. The incident light angle (α=8°) is fixed. 
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Supplementary Figure S2. (a) Schematic representation of the backscattered optical path 
of the light diffracted from the egg sac’s material when the surface of the water is hit with an 
approximately perpendicular incident angle; n0, n1, n2 are refractive indices of the 
corresponding media/materials, d is the diffraction grating period; θ1 to θ3 are incidence and 
refraction angles. (b) Colour distribution along the egg sac’s circumference computed using 
this simplified diffraction grating model; grating period = 190 nm and 230 nm for the outer 
and inner curvatures, respectively. 
 
 
 

 
Supplementary Figure S3. Effective refractive angle θeff is not affected by the presence of 
a uniform thin layer of water on the egg. As e is small compared to the radius of the egg, Δθ 
is negligible and neither the refracted angle nor the spectral shift is affected by the presence 
of a layer of water at the envelope as long as this layer is thin and follows the shape of the 
sac. 
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Supplementary Figure S4. (a-left panel, b, c) Backscattered spectra of the egg sac 
envelope under different incident light angles θ1 with the X-axis in water (b) and in air (c). 
(a-right panel, d) Backscattered spectra of the egg sac envelope under different incident 
light angles θ1 with the Z-axis in water. All spectra were smoothed with a spline function 
(spline parameter = 0.98) in Matlab. 
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