
Online Supplement for Drop ejection from vibrating

damped, dampened wings

1 Supplementary movie captions

Movie S1: Sliding ejection mode. A mobile drop slides from its initial position to the end of the
cantilever, and leaves no portion of itself on the substrate.
Movie S2: Normal-to-substrate ejection. A drop ejects without sliding from its original position,
with nearly symmetrical contact line motion, and leaves no portion of itself on the substrate.
Movie S3: Pinch-off ejections. A portion of the drop ejects in cohesive failure while a portion of
the drop remains attached to the substrate. The drop deforms to form a neck which closes in one
of three ways: neck closure at the portion attached to the substrate, neck closure at the ejecting
mass, and simultaneous closure at both liquid bodies.
Movie S4: Comparison of actual cantilever deflection to theoretical deflection simulated and
animated with MATLAB. Axes in the simulated motion have units of meters (m).

2 Determining inertial forces from modal shape

The traditional approach to beam structural dynamics theory involves the Euler-Bernoulli kine-
matic assumption with small deflections and provides a straightforward path from a statement of
equilibrium to the equation of motion. However, the large deflections observed motivate the use of
Euler’s elastica to model the beam deformation. In addition, the presence of fluid drops atop the
beams imposes added forcing/inertial terms. Using representative static solutions of the elastica
as a nonlinear basis for the large deflections, a reduced-order energy-based model admits a path
to predict the beam structural dynamics through an assumed-modes model. Finally, we can use
the elastica kinematics to transform the beam’s structural dynamics to the drop’s motion and thus
associated inertial forces.

2.1 Elastica development

A beam’s bending moment M is proportional to the change in the curvature produced by the action
of the load Fig.S3. This law may be written mathematically as follows:

1

r
= −dθ

dz
= −M

EI
(1)

where r is the radius of curvature, θ is the slope at any point xo, where xo is measured along the arc
length of the member as shown in Fig.S3, E is the modulus of elasticity, and I is the cross-sectional
moment of inertia.

Looking ahead, we represent the beam’s transverse deflection as a representative static shape
wam(x). In Cartesian coordinates, Eq.(1) may then be written as

1

r
=

w′′am

[1 + (w′am)2]
3
2

= −M

EI
(2)
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where

w′am =
dwam

dx
and w′′am =

d2wam

dx2
. (3)

The expression for the bending moment M at any 0 ≤ x ≤ xf, where xf tip-to-base distance for a
curved beam of length L, may be obtained by using the free-body diagram in Fig.S3. Applying
statics,

M = −P (xf − x). (4)

By substituting Eq.(4) into Eq.(2) and assuming that the flexural rigidity EI is uniform along the
beam length, we obtain

w′′am

[1 + (w′am)2]
3
2

=
P (xf − x)

EI
≡ λ(x). (5)

Integrating Eq.(5), we obtain
w′am

[1 + (w′am)2]
1
2

= ϕ(x) + C, (6)

where

ϕ(x) =

∫
λ(x)dx =

P

EI
(xfx− 1

2
x2) (7)

and C is the constant of integration that can be determined by applying a boundary condition. In
this case the beam has zero slope at the root, or w′am(0) = 0. By using this boundary condition in
Eq.(6), we find

w′am

[1 + (w′am)2]
1
2

=
P

EI
(xfx− 1

2
x2) ≡ G(x). (8)

Solving Eq.(8) for w′am, we obtain

wam
′(x) =

G(x)

[1 −G(x)2]
1
2

. (9)

It should be noted, however, that G(x) in Eq.(8) is a function of the unknown horizontal dis-
placement ∆ = L − xf of the free end of the beam. The value of ∆ may be determined from the
equation

L =

∫ xf

0
[1 + (w′am)2]

1
2dx (10)

by using a shooting method. That is, we assume a value of ∆ (and thus xf, the upper limit of
integration) and carry out the integration in Eq.(10). If our guess of ∆ is correct, the integral will
indeed yield the beam length L. If the integral is too large, our calculated beam length is too long
and we need to use a smaller ∆; if the integral is too small, a larger ∆. The procedure may be
repeated for various values of ∆ until the correct length L is obtained; numerical methods exist to
carry out this procedure rapidly and to ensure convergence to the actual beam length.

Building on this method, we then use the results of Eq.(10) to find the corresponding assumed
horizontal deformation of the beam, which we describe as the deflection in the negative x-direction
uam. Moreover, we can apply the method for any given point on the beam, not merely for the
full length. In so doing, we establish a numerical assumed shape for the horizontal deformation.
With uam found, wam can be found using Eq.(5). Eq.(5) is a nonlinear second order differential
equation and exact solution of this equation is not presently available1. Instead we use a Taylor
series expansion taking only the first two terms of the series and then converge it with the original
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equation. Convergence of these two equations shows that the difference is on the order of O(−15).

2.2 Reduced-order energy-based model development

Using an assumed-modes construction, we represent the beam displacement in terms of the rep-
resentative deflection shape wam(x) (i.e., the assumed mode derived above) and a rigid-body dis-
placement mode w0(x). While this approach admits the inclusion of additional assumed modes,
we found a single-mode approximation adequately predicts the beam dynamics. The total beam
transverse displacement is then

w(x, t) = a0(t)w0(x) + a(t)wam(x), (11)

where a(t) represents the amplitude of the assumed mode motion and a0(t) corresponds to the
vertical motion of the shaker (i.e., the beam root). The total beam axial displacement

u(x, t) = a0(t)u0(x) + a(t)uam(x). (12)

The experiments involve base excitation of the beams, so we use w0(x) = 1. Base motion is strictly
transverse to the beam, so the horizontal component u0(x) = 0.

Formulating the equations of motion involves application of the extended Hamilton’s Principle,
which involves computations of the kinetic energy, strain energy, and virtual work associated with
a virtual displacement within a particular assumed mode2. The kinetic energy of the beam is

T =
1

2

∫ L

0
ρA
(
u̇(x, t)2 + ẇ(x, t)2

)
dx. (13)

Substituting the assumed-modes representations of Eqs. (11) and (12) and recognizing that a(t)
and a0(t) can be pulled outside the spatial integrals:

T =
1

2

[
ȧ2
(∫ L

0
ρAu2amdx+

∫ L

0
ρAw2

amdx

)
+ ȧ20

∫ L

0
ρAw2

0dx+ 2ȧ0ȧ

∫ L

0
ρAw0wamdx

]
. (14)

Note this has a quadratic form

T =
1

2

{
ȧ0
ȧ

}t [
M00 M0

M t
0 M

]{
ȧ0
ȧ

}
, (15)

where

M =

∫ L

0
ρAu2amdx+

∫ L

0
ρAw2

amdx and M0 =

∫ L

0
ρAw0.wamdx. (16)

The strain energy of the beam, including non-linear strain-displacement relations to account for
the large displacements and rotations, is

U =
1

2

∫ L

0

[
(EIw′′(x))2 +

1

2
(EIw′(x, t))2(w′′(x))2 +

1

320
Ebh5(w′′(x, t))4

]
dx, (17)

where b is beam with and h is beam thickness. Since the base motion is a rigid-body motion, the
spatial derivatives w′0 = w′′0 = · · · = 0 and we only have derivatives of the assumed modes. As with
the kinetic energy, the time component a(t) can be pulled outside the integral and for a single-term
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approximation:

U =
1

2
a2
∫ L

0
EI(w′′am)2dx+

1

4
a4
∫ L

0
EI(w′am)2(w′′am)2dx+

1

640
a4
∫ L

0
Ebh5(w′′am)4dx. (18)

In computing these derivatives, we use a finite-difference method; the derivatives of u′am and w′′am
are shown in Fig.S4 to confirm smoothness. One term of this expression has a quadratic form,
which leads to

U =
1

2

{
a0
a

}t [
0 0
0 kL

]{
a0
a

}
+

1

4

{
a0
a

}t [
0 0
0 kNL

]{
a30
a3

}
. (19)

Eq.(18) can be divided into two parts: the usual linear stiffness from Euler-Bernoulli beam theory
(quadratic energy term) and the nonlinear stiffness terms:

kL =

∫ L

0
EIw′′am

2
dx, (20)

and from Von Karman strain the non-linear term is:

kNL =

∫ L

0

[
EIw′am

2
w′′am

2
+

1

160
Ebh5w′′am

4
]
dx. (21)

Finally, the beam is driven via harmonic base motion, fbase(t). Since it is applied only at the root
of the beam, the virtual work associated with this forcing is

δW = fbase(t)δw(0, t) = fbase(t)δa0(t)w0(0) + fbase(t)δa(t)w(0) = δa0(t)fbase(t). (22)

Application of extended Hamilton’s Principle then leads to a set of equations of motion:[
M00 M0

M t
0 M

]{
ä0
ä

}
+

[
0 0
0 kL

]{
a0
a

}
+

{
0

kNLa
3

}
=

{
fbase

0

}
(23)

The experiments involve base motion that consists of a fixed-frequency oscillation with linearly
increasing amplitude; that is,

a0(t) = (Ai +Aratet) sin Ωt, (24)

where Ai is the initial base amplitude and Arate is the rate at which the base amplitude increases.
With the addition of a viscous damping term for the beam, the second equation of Eq.(23) becomes

Mä+ cȧ+ kLa+ kNLa
3 = −M0ä0(t) (25)

Solving Eq.(25) yields a(t) and substituting back in Eqs. (11), (12) and (24) provides the beam
axial and transverse displacement:

u(x, t) = a(t)uam(x) (26)

and
w(x, t) = a(t)wam(x) + (Ai +Aratet) sin(Ωt). (27)

2.3 Kinematics and drop motion

With the beam motion determined, we can compute the drop motion and its associated inertial
forces. Here, x0 is the position of the drop when the beam is stationary, which is labeled in Fig.4
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of the main text. Using Eq.(26) the horizontal displacement of the point where the drop contacts
the beam becomes:

xd(t) = x0 − a(t)uam(x0) (28)

The vertical displacement of the point where the drop contacts the beam is simply the displacement
at that point, yd(t) = w(x0, t). From Eq.(27), Eq.(28), and Fig.4 of the main text, the position
vector r(t) of the point mass is:

r(t) =
[
xd − δ sinw′(x0, t)

]
î+
[
yd + δ cosw′(x0, t)

]
ĵ (29)

=
[
x0 − auam − δ sinw′(x0, t)

]
î+
[
awam + (Ai +Aratet) sin(Ωt) + δ cosw′(x0, t)

]
ĵ. (30)

Finally, the inertial force acting on a rigid drops center of mass (COM) is

Fi = mdr̈. (31)

3 Droplet volume

The droplet radius, R(h) shown in Fig.S5, which is dependent on the height, h, can be described
at an arbitrary height by 3:

R(h) =
√
R2 − (h−R cos θe)2. (32)

The volume of a droplet with equilibrium contact angle θe can be calculated as follows:

V =
4

3
πR3 −

∫ 2R−H

0
πR(h)2dh. (33)

Representing the upper limit of the integration, h′ = 2R−H,

V = π

[
4

3
R3 −R2h′ +

(h′)2

3
− (h′)2 cos θe +R2h′ cos2 θe

]
. (34)

4 Supplementary figures
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Figure S1: Shaker base amplitude across the range of experimental vibration frequency.
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Figure S2: Drop release via pinch-off. (a) The dependence of released mass and the size of the drop. The
mass of drops dripping from glass capillaries is shown for comparison4. (b) The relation between
drop mass and cantilever acceleration of drop release. Best fits in (b) are given by Eq.7 (main
text) using F (Rc, xo, θe) 0.34, 0.29, and 0.30 for 85 Hz, 100 Hz, and 115 Hz respectively.
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Figure S3: Large deformation of a cantilever beam of uniform cross section. Inset: Free-body diagram of
a beam element of arbitrary length.
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Figure S4: Assumed beam deflection shapes in the (a) axial and (b) transverse directions for all points
along the beam length, with (c) and (d) spatial derivatives used in strain energy formulation.
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Type equation here.
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Figure S5: Geometric description for calculating the volume of a drop resting on a flat surface.
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