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A On the probability of passing the wall from

both sides

In the main text we have argued the trapping of the Vicsek particles on
the convex side of the funneled wall because, as long as the flock is aligned
with the wall, the probability of going into the convex side of the wall in
much higher than the probability of passing in the opposite direction. In
this section, we show an example to justify this assumption. We choose a
system with N = 2000, L = 32, η = 0.1, δ = 0.6, dc = 2 and α = 30 degrees,
in which a complete trapping of metric Vicsek particles occurs. In addition,
we set the initial positions of the particles to be aligned and parallel to the
funneled wall, in one case on the concave side of the wall (Fig. 1A) and in
the other on the concave side (Fig. 1B). Then, we compute the number of
particles that enter into the channel during the first 600 iterations, obtaining
a passing rate of Nin = 1.972 particles per iteration. On the contrary, the
rate of particles leaving the channel in the steady state, between iterations
5000 to 10000, is of about Nout = 0.002 particles per iteration. As it can be
seen in Fig. 1C, we are counting the number of particles entering into the
channel, Nin, during a transitory state, while the number of particles escaping
the channel, Nout, is obtained once the steady state has been reached. Thus,
we can estimate the relationship between the probability of passing towards
the concave side of the wall, Pconcave, and the probability of passing towards
the convex side Pconvex as:

Pconcave
Pconvex

= 0.5
Nin

Nout

≈ 0.0005 (1)
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where the factor 0.5 takes into account that in the steady state particles can
escape the channel through both walls. Therefore, as long as the flock is
aligned with the wall and η small enough, the difference in probabilities of
passing from the concave to the convex side explains the trapping inside the
channel.
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Fig. S 1: A) Snapshot of the initial condition. B) Snapshot of the steady
state. C) Time evolution of the number of particles escaping (green line)
and entering (violet line) into the channel. The horizontal red dashed line
indicates the time interval where Nin is evaluated and the light green dashed
line points the time interval where Nout has been computed.

We have applied the same method to determine the probability of par-
ticles escaping and entering the channel as a function of the opening of the
funnels δ. We set the initial positions of the particles to be aligned and paral-
lel to the funneled wall, in one case on the concave side of the wall (Fig. 1A)
and in the other on the concave side (Fig. 1B). To compute the entering flux
we only used the initial time steps, until a total of N/4 particles entered the
channel, and averaged aver 10 different trajectories, while the leaving flux is
computed along one simulation of 50000 steps. Because of these selected ini-
tial configurations we can estimate the relationship between the probability
of passing towards the concave side of the wall, Pconcave, and the probability
of passing towards the convex side Pconvex from these fluxes. As it can be
seen in figure 2, the both probabilities, entering and leaving the channel,
increase with δ, but the leaving probability increases at a much more higher
rate. The probability ratio Pconcave

Pconvex
increases with δ exponentially and will

eventually reach a value of one. Therefore, the trapping of Vicsek particles
is less effective as δ increases.
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Fig. S 2: Left, normalized entering and leaving flux (j̄, as defined in the
main text and used in figure 4) as a function of δ. Right, The ratio between
the probabilities of entering and leaving the channel as a function of δ. The
values η = 0.1, α = 30 degrees, dc = 2, L = 32 and N = 2000 remain fixed
in both graphics.

B Dependence on the bouncing rules
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Fig. S 3: Number of particles trapped in the steady state (after 50000 itera-
tions) as a function of the opening length of the funnels, δ, and Vicsek noise,
η, in the case of an aligning bouncing rule (left), an elastic bouncing rule
(center) and a repulsive bouncing rule (right). Vicsek particles with swim-
ming speeds of v = 0.2 in between two parallel walls of funnels with α = 30
degrees and dc = 2.
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C Dependence on the swimming speed
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Fig. S 4: Number of particles trapped in the steady state (after 200000
iterations) as a function of the opening length of the funnels, δ, and Vicsek
noise, η, in the case of an aligning bouncing rule (left), an elastic bouncing
rule (center) and a repulsive bouncing rule (right). Vicsek particles with
swimming speeds of v = 0.004 in between two parallel walls of funnels with
α = 30 degrees and dc = 2.

D Comparison with Drocco et al

Our results significantly differ from those reported in Ref. [1] and thus, we
have carried out a thorough comparison. In Ref. [1], the authors consider
excluded-volume Vicsek particles that depending on the particles’ size recti-
fies towards one side or the other of the funneled wall. Since our particles are
punctual, this comparison is restricted to the low size limit of their particles.
There are three relevant differences between our work and theirs. The Vicsek
velocity v: they use v = 0.004 while se use v = 0.2; the bouncing rule: we
use aligning while they use repulsive; and the boundaries: we use periodic
boundary conditions while they use repulsive ones.

We have qualitatively reproduced the geometry reported in Ref. [1]; a sin-
gle funneled wall in a square simulation box of side length L = 30 bounded
by repulsive wall. First, as shown in section C, the bouncing rule is not im-
portant for the behaviour of the system at such low velocities. To investigate
the role of the two other differences, we launched two funnel geometries, one
with α = 60 degrees, the angle used in Ref. [1] and another with α = 30 de-
grees, being dc = 1 and δ = 0.4. For each of these geometries, we simulated a
system with repulsive boundaries and another with periodic boundary condi-
tions along in the axis parallel to the wall, while keeping repulsive boundaries
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in the other axis. We defined the parameter r = Ntop/N , where Ntop is the
number of particles in the top chamber averaged over the last half of the
run, which has a total of 100000 iterations. When using α = 60 degrees
with repulsive boundaries (figure 5, left panel), we obtained r = 0.959, in
good agreement with the results in Ref. [1], while applying periodic bound-
ary conditions in one direction, we obtained r = 0.931. Repeating the same
simulations with α = 30 degrees, we obtained r = 0.053 for the repulsive
boundary case and r = 0.015 applying periodic boundary conditions (fig-
ure 5, right panel). Therefore, we conclude that changing the geometry of
the funnel wall seems to be enough to achieve trapping at the other side of
the chamber. In addition, the periodic boundary conditions enhances the
described collective trapping described in our paper. This is because both
factors increase the tendency of the flocks to align with the wall of funnels,
which is crucial for the collective trapping behavior to occur.

Fig. S 5: Left, a reproduction of the geometry used in the paper by Drocco
and others[1]. Right, we recover our geometry by changing the angle of the
chevrons and using periodic boundary conditions in one direction.

E A Vicsek-like nematic alignment model: trap-

ping also occurs

In physical systems, steric interactions between the different rod-shaped ele-
ments can induce nematic alignment, making the study of systems that show
this type of collective behavior very interesting from both the theoretical and
experimental point of view. In this section, we use the same system as in the
rest of the manuscript, except that we use a modification in the inter particle
interaction rules to produce nematic alignment [4].
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Fig. S 6: Trapping of particles that follow the equivalent of a metrico Vicsek
model but interactin via the nematic alignment rule presented in eq 3. Left,
trapping as dependent on η and γ, with dc = 2 and α = 30 degrees. Center,
dependence on η and α, with δ = 1 and d− c = 2, in the red dashed region
particles get trapped in the concave side of each individual chevron. Right,
dependence on η and dc, with δ = 0.5 and α = 30 degrees.

The Vicsek alignment rule, as exposed in equation 2 of the main text,
reads:

θi(t+ ∆t) = arg

 ∑
j∈Ni(t)

eiθj(t)

 + 2πηζ (2)

Where θj are the orientations of the neighbors of particle i. In this section
we use, instead:

θi(t+ ∆t) = arg

 ∑
j∈Ni(t)

sign[cos(θk − θj)]e
iθj(t)

 + 2πηζ (3)

Under this interaction rule, the steady state of the system at low η exhibis
nematic order.

The same configuration of obstacles that we used with the Vicsek model
is also capable of trapping particles in this other system. In figure 6 we can
see the equivalent of first column of figure 2 from the main text, and there
is an evident similarity. Thus, we can conclude that the results presented
in this paper are also of interest for the study of systems showing nematic
order.
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