Supplementary Information for

Effect of pH, Temperature and Shear on the Structure-Property Relationship of Lamellar Hydrogels from Microbial Glucolipids Probed by *in-situ* Rheo-SAXS

Ghazi Ben Messaoud,^{1,†} Patrick Le Griel,¹ Daniel Hermida-Merino,² Niki Baccile^{1,*}

¹ Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie

de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France

² Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF BP CS40220,
38043 Grenoble, France

*Correspondence to: Dr. Niki Baccile, niki.baccile@sorbonne-universite.fr, Phone: 00 33 1

44 27 56 77

[†] Current address: DWI- Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany

This PDF file includes:

Figs. S1 to S2 Video 1 and Video 2 are downloadable at the editor's website.

Figure S 1 – Rheo-SAXS apparatus used at the BM29B beamline at ESRF synchrotron (Grenoble, France). A MCR 501 rheometer (Anton Paar, Graz, Austria) equipped with a Couette polycarbonate cell (imposed gap = 1 mm) is employed. A radial configuration is used during the Rheo-SAXS study.

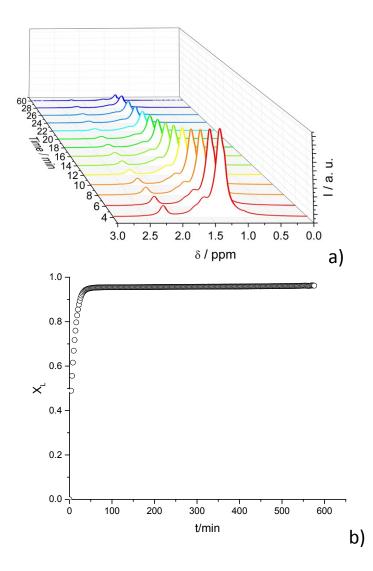


Figure S 2 – Time-resolved ¹H solution NMR recorded during the sol-to-gel (micellar-to-lamellar) transition of G-C18:0 glucolipid ($C_{G-C18:0}$ = 5 wt%) upon acidification (initial pH 11, [GDL]= 100 mM, solvent: D₂O). a) Plot of the 1D ¹H NMR spectra in the 3 < δ /ppm < 0 range within one hour from GD addition. Attribution: α -CH₂, $\delta_{R-CH2CH2COOH}$ = 2.23 ppm; β -CH₂, $\delta_{R-CH2CH2COOH}$ = 1.61 ppm; aliphatic chain, $\delta_{\underline{R}-CH2CH2COOH}$ = 1.34 ppm. b) Time evolution of the molar fraction of G-C18:0 glucolipid ($C_{G-C18:0}$ = 5 wt%) in the lamellar phase X_L= 1-X_M, where X_M, the micellar fraction, is obtained by the normalized integral of the ¹H NMR signal of G-C18:0 in the interval 3 < δ /ppm < 0. ¹H NMR is only sensitive to the compound in the micellar environment.