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I. FMT IN SPHERICAL GEOMETRY

We now provide explicit formulas for the FMT weighted densities in the underlying

spherical geometry. The scalar weighted densities used in the hard-sphere functional

can be written as

nα(r) =
∑
i

∫
ρi(r

′)ω(i)
α (r − r′)dr′. (1)

Here, the subscript α denotes the set of weighted function, whereas the upper index

(i) refers to the ionic spices. The weight functions can be either scalar or vector

entities. The scalar ones are given by

ω
(i)
3 (r) = Θ(ai − r) (2a)

ω
(i)
2 (r) = δ(r − ai) (2b)

ω
(i)
1 (r) =

ω
(i)
2 (r)

4πai
(2c)

ω
(i)
0 (r) =

ω
(i)
2 (r)

4πa2i
. (2d)

The subscript α is such that (α−3) refers to the spatial dimensionality of the under-

lying weighted density. The vector weighted densities are represented as convolutions

similar to the ones in Eq. (1), with the weight functions replaced by the following

vectors:

ω
(i)
2 (r) = −∇ω(i)

3 (r) = δ(r − ai)êr (3a)

ω
(i)
1 (r) =

ω
(i)
2 (r)

4πai
, (3b)

where êr = r/r is the unit vector pointing at the radial direction. In the present

situation of radially symmetric potentials, the density profiles depend only on the

radial coordinate r′. Likewise, the scalar weight functions depend only on the relative

distance R = |r − r′| =
√
r2 + r′2 − 2r · r′ between source and observation points.
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The integrals in (1) can therefore be explicitly written as

nα(r) =
∑
i

∫ ∞
0

ρi(r
′)r′2dr′

∫ 2π

0

dϕ′
∫ π

0

ω(i)
α (R) sin θ′dθ′. (4)

If we now conveniently set the z-axis along the direction of the observation

point r in performing the above integral, the relative distance R becomes R =
√
r2 + r′2 − 2rr′ cos θ′. Integration over the azimuthal angle ϕ′ can be readily per-

formed, while the integration over polar angle θ′ can be converted into an integral

over the relative distance R. To this end, we note that RdR =
sin θ′

rr′
dθ′. Converting

the integration limits accordingly, we arrive at the following result for the scalar

weighted densities:

nα(r) =
2π

r

∑
i

∫ ∞
0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
ω
(α)
i (R)RdR. (5)

A similar reasoning can be applied to rewrite the vector weight densities

nα(r) =
∑
i

∫
ω(i)
α (r − r′)ρi(r′)dr′ (6)

into a much simplified form. We first notice that the vector weight functions in Eqs.

(3a) and (3b) can be written as ω
(i)
α (r − r′) = |ω(i)

α (R)|êR, where êR = (r−r′)
R

is the

unit vector connecting integration and observation points. The integrals above can

thus be explicitly written as

nα(r) =
∑
i

∫ ∞
0

ρi(r
′)r′2dr′

∫ π

0

sin θ′dθ′
∫ 2π

0

|ω(i)
α (R)|
R

(r − r′)dϕ′. (7)

Once again, it is convenient set the (fixed) radial vector êr as pointing along the

z-axis, êz, while performing the above integral. With this choice, the integration

source point r′ can be composed in terms of its cartesian components as

r′ = r′(sin θ′ cosϕ′ êx + sin θ′ sinϕ′ êy + cos θ′ êz), (8)
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while r = rêr = rêz. It is easy to check that contributions in the x and y directions

will vanish when the above expression is inserted into Eq. (7), since the azimuthal

integrals are zero. Only the contribution along the z-axis (which coincides with the

êr direction) survives, and a simple integration over the azimuthal angle provides

nα(r) = 2πêr
∑
i

∫ ∞
0

ρi(r
′)r′2dr′

∫ π

0

|ω(i)
α (R)|
R

(r − r′ cos θ′) sin θ′dθ′. (9)

The second integral over polar angle can be again transformed into an integral over

the relative distance R, under the simple replacement cos θ′ =
r2 + r′2 −R2

2rr′
. The

above integral assumes then the form

nα(r) =
π

r2
êr
∑
i

∫ ∞
0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
|ω(i)

α (R)|
[
R2 + r2 − r′2

]
dR. (10)

It is quite clear from Eqs. (5) and (10) that both scalar and vector weighted

densities will be radially symmetric, just like the original densities. Besides, the

vector densities always point in the radial direction of the observation point, êr.

Inserting the weight functions from Eqs. (2b) and (3a) into Eqs. (5) and (10),

respectively, leads to the following explicit relations:

n2(r) =
2π

r

∑
i

∫ ∞
0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
δ(R− ai)RdR (11a)

n2(r) =
π

r2
êr
∑
i

∫ ∞
0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
δ(R− ai)

(
R2 + r2 − r′2

)
dR. (11b)

The integrals over the relative distance R will clearly vanish whenever the point

R = ai lies outside the range of integration. If r > ai, this condition is fulfilled

for r′ in the range r − ai ≤ r′ ≤ r + ai (for the upper integration limit is always

bigger than ai in this case). On the other hand, if r < ai, this condition implies

ai − r ≤ r′ ≤ r + ai. Thus, only values of r′ within these ranges will have a non-

vanishing contribution in the first integrals above. Moreover, the delta functions will
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simply filter the points R = ai in these intervals, resulting in the following simplified

expressions:

n2(r) =
2π

r

∑
i

ai

∫ (r+ai)

|r−ai|
r′ρi(r

′)dr′ (12a)

n2(r) =
π

r2
êr
∑
i

∫ (r+ai)

|r−ai|
r′ρi(r

′)[r2 + a2i − r′2]dr′. (12b)

There is an apparent singularity in the above weighted functions as one approaches

the center of the shell (i. e., at r → 0). However, it is easy to check that the

integrals in (12a) and (12b) scale as ∼ r and ∼ r3, respectively, at this point, so

that the weighted densities remain finite at the origin. From the above expressions,

explicit relations for the weighted densities n0(r), n1(r), as well as for the vector

density n1 follow direct by using Eqs. (2d), (2c) and (3b), respectively. The results

are:

n0(r) =
1

2r

∑
i

1

ai

∫ (r+ai)

|r−ai|
r′ρi(r

′)dr′ (13a)

n1(r) =
1

2r

∑
i

∫ (r+ai)

|r−ai|
r′ρi(r

′)dr′ (13b)

n1(r) =
1

4r2
êr
∑
i

1

ai

∫ (r+ai)

|r−ai|
r′ρi(r

′)[r2 + a2i − r′2]dr′. (13c)

Now, the remaining weighted density n3(r) can be obtained by inserting the weight

function (2a) into (5). Explicitly, one gets:

n3(r) =
2π

r

∑
i

∫ ∞
0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
Θ(R− ai)RdR. (14)

Notice that the last integral vanishes in the region |r − r′| > ai. When r > ai,

this implies that the only non-vanishing contributions come from r′ in the region

r − ai < r′ < r + ai (note that the upper integration limit is always greater than ai
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in this case), whereas if r ≤ ai the non-vanishing contributions come from ai − r ≤

r′ < r + ai. Moreover, if r + r′ > ai, this upper integration limit is to be replaced

by ai. Clearly, this will always happen in region r > ai. Combining these results, we

can split the above integral into such distinct regions as follows:

n3(r) =



2π

r

∑
i

[∫ ai−r

0

r′ρi(r
′)dr′

∫ r+r′

|r−r′|
RdR +

∫ r+ai

ai−r
r′ρi(r

′)

∫ ai

|r−r′|
RdR

]
, r ≤ ai,

2π

r

∑
i

∫ r+ai

r−ai
r′ρi(r

′)dr′
∫ ai

|r−r′|
RdR, r ≥ ai.

(15)

Now, the integrals over R can be readily performed, and the above expressions finally

simplify to:

n3(r) =



π

r

∑
i

[
4r

∫ ai−r

0

r′2ρi(r
′)dr′ +

∫ r+ai

ai−r
r′ρi(r

′)[a2i − (r − r′)2]dr′
]
, r ≤ ai,

π

r

∑
i

∫ r+ai

r−ai
r′ρi(r

′)[a2i − (r − r′)2]dr′, r ≥ ai.

(16)

Again, it is important to note that this weight function remains finite at the origin,

since the second integral in the first line above has leading term proportional to ∼ r

in this limit. Notice also that by virtue of the identity in (3a), Eq. (12b) can be

obtained from the above equation by making n3(r) = −∇n3(r).

The expressions provided above show that numerical integration to obtain the

weighted densities can be effectively performed considering only one-dimensional in-

tegrals over a small region of at most one diameter size around each observation point

r. After numerical calculation of the weighted densities, the hard-sphere interaction

contribution to the excess chemical potential can be readily computed using:
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βµi(r) =
δβFhc

δρi(r)
=
∑
α

∫
µα(r′)

δnα(r′)

δρi(r)
dr′, (17)

where we have defined µα(r) ≡ ∂Φ

∂nα


nα(r)

as the derivative of the (local) free-energy

density in the FMT functional with respect to the weighted ionic densities. Using

Eq. (1), the expression above can be simplified to

βµi(r) =
∑
α

∫
βµα(r′)ω(i)

α (r′ − r)dr′. (18)

In the case of vector weight functions, the above integrals are generalized to a

scalar product between the gradient of Φ(nα) with respect to the components of

the vector density nα and the corresponding weight density ωα. Since the vectors

µα(r′) point in the radial direction êr′ , whereas the weight densities point along the

direction of −êR = (r′ − r)/R, these integrals can be written as∫
µα(r′) · ω(i)

α (r′ − r)dr′ =

∫
|µα(r′)|

R
|ω(i)

α (R)| (r′ − r cos θ′) dr′, (19)

where again θ′ = cos−1(êr · êr′) is the angle between the vectors r and r′. As before,

we can set the z-axis so as to coincide with the observation point direction r. The

azimuthal integration can thus be trivially performed, while the integration of polar

angle can be simplified under the substitution cos θ′ = (r2 + r′2 − R2)/(2rr′). The

above expressions are then simplified to∫
µα(r′) · ω(i)

α (r′ − r)dr′ =
π

r2

∫ ∞
0

|µα(r′)|r′dr′
∫ r+r′

|r−r′|
|ω(i)

α (R)|
(
r2 +R2 − r′2

)
dR.

(20)

Note that, because the weighted densities nα(r) all possess radial symmetry, the

functions µα will be also spherical symmetric, as well as the resulting chemical poten-

tials in Eq. (18). As a consequence, all the integrals in each term of this expression

can be simplified to a one-dimensional radial integral, I
(i)
α (r), whose form is identical
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to the corresponding nα(r) integrals given above, provided the simple replacement

ρi(r)↔ µα(r) is made.

As a final remark we notice that, since the numerical integrals are in practice

performed over a finite volume, the upper integration limits over the radial coordinate

r′ are to be replaced by Rmin = min(Rc, r+ai), where Rc is the radius of the confining

cell in which integration is performed.

II. FORCE BALANCE ACROSS THE SHELL

We now provide a detailed derivation of the force-balance condition across the

spherical charged shell of radius R. Since the system possess spherical symmetry,

the net force on an arbitrary point on the shell surface will point in the radial

direction. This force can be either positive or negative, resulting in an outward or

inward osmotic stress, respectively. The net force on the shell is the force exerted by

the surrounding ionic cloud on its surface. On the other hand, the force due to the

electrolyte on the shell is the negative of the force that the shell exerts on the ionic

system. Due to the spherical symmetry, the force dF acting on each element of area

dA on the shell surface is the same. The corresponding pressure is therefore P =
dF

dA
.

On the other hand, the net force on the wall can be split into electrostatic and

hard-sphere contributions. Making use of the spherical symmetry, the electrostatic

contribution to the osmotic stress over the surface is

Πel
s =

1

A
q

∫
%s(r)(Eion(r) · êr)dr, (21)

where %s(r) = Zqδ(r − R)/4πR2 is the charge density lying on the shell surface,

Eion is the electric field produced by the mobile ions only, êr is the unit vector

pointing at the radial direction and A = 4πR2 is the surface area. Notice that,

while the net force on the shell is obviously zero, the radial force on an arbitrary
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point on the surface does not vanish. Since the ionic profiles have radial symmetry,

application of the Gauss Law allows one to write the ionic electric field as Eion(r) =

Zion(r)q/εr2êr, where Zion(r) is the total ionic charge enclosed within a sphere of

radius r. Substituting these results in the above expression provides the following

expression for the electrostatic pressure on a given point on the surface:

Πel
s =

qZEion(R)

A
=
ZZinλB
4πR4

, (22)

where we have defined Zin ≡ Zion(R) as the net ionic charge lying inside the spherical

shell. Since the net ionic charge inside the shell volume has sign opposite to the shell

surface charge surface, this contribution to the osmotic stress is usually negative,

leading to the shrinkage of the shell surface.

Let us now consider the hard-core ion-wall interaction to the osmotic pressure.

According to Newton’s third Law, the net radial pressure due to ionic collisions at

close contact with the shell membrane can be expressed as

Πhs
s =

1

A

∑
i

∫
ρi(r)

(
∇φhsi (r) · êr

)
dr, (23)

where φhsi (r) is the ion-shell hard-core potential. Using the radial symmetry of

both ionic profiles and ion-shell hard-core interactions, the expression above can be

conveniently rewritten as

βΠhs
s = −4π

A

∑
i

∫ ∞
0

r2
d

dr

(
e−βφ

hs
i (r)

)
ρi(r)e

βφhsi (r)dr. (24)

Note that, in contrast to φhsi (r), the quantity e−φ
hs
i is limited everywhere. This

function vanishes at ion-shell overlap, being equal to unity anywhere else. Integration

by parts of the above expression yields

βPihs = −4π

A

∑
i

[∫ ∞
0

d

dr

(
ρi(r)r

2
)
dr −

∫ ∞
0

e−βφ
hs
i (r) d

dr

(
ρi(r)r

2eβφ
hs
i (r)

)
dr

]
.

(25)
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Now, noticing that the quantity φhsi (r) vanishes in the regions of non-overlapping,

it becomes clear that the integrals above cancel each other in such regions (since

eβφ
hs
i = e−βφ

hs
i = 1 there). Moreover, the second integral vanishes when ion and shell

overlap. The only contribution left is, therefore,

βPihs = −4π

A

∑
i

∫ R+

R−

d

dr

(
ρi(r)r

2
)
dr =

4π

A

∑
i

ρi(R−)R2
− − ρi(R+)R2

+, (26)

where R± denotes the closest inner/outer ion-shell contact distance. For very thin

shells R± ≈ R. The radial contribution from ion-shell hard-core interactions to the

osmotic pressure is then

βΠhs =
∑
i

ρi(R−)− ρi(R+). (27)

Note that the inner (outer) contact ionic densities dictate the outward (inward) con-

tributions to the osmotic pressure. The overall ionic contribution to the osmotic

stress can be obtained by combining of electrostatic and the hard-sphere contribu-

tions, Eqs. (22) and (27), respectively,

βΠosm =
∑
i

ρi(R−)− ρi(R+) +
ZZinλB
4πR4

. (28)

The above expression comprises only ionic contributions to the osmotic stress, re-

sulting from corresponding the ion-shell interactions. The total osmotic stress should

also contain the contribution from the shell electrostatic and elastic self-energies. The

electrostatic self-energy is

βU self
s =

ε

8π

∫
|Es(r)|2dr, (29)

where Es stands for the electric field produced by the charged shell. This field

vanishes inside the charged shell, while at distances larger than the shell radius it is

given by Es(r) = Zq/εr2êr. Substitution of this expression into the above integral
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results in βU self
s = λBZ

2/2R. The corresponding contribution to the osmotic stress

can be computed from βΠ = − 1

4πR2

∂βU self
s

∂R
, resulting in

βΠself
s =

λBZ
2

8πR
. (30)

Note that this contribution is always positive. The total electrostatic and hard-sphere

contribution to the osmotic stress can finally be written as

βΠs =
∑
i

ρi(R−)− ρi(R+) + λB
Z(Z + 2Zin)

8πR4
. (31)
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