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S1 Prior Results for Lattice Dimers

The lattice dimer model that we chose for our example has a long
history of prior study across different disciplines. Physicists know
it as “dimers”, mathematicians as “tilings”, and computer scien-
tists as “perfect matchings”.1 The results from all these disciplines
inform our study, as we show in this section.

The lattice dimer model was first introduced to model adsorp-
tion of diatomic molecules on surfaces in 1937 by Fowler and
Rushbrooke.2 Fowler and Rushbrooke quickly identified one of
the main questions of the model: how many dimer configurations
Z are there in a filled rectangular domain of m× n cells? Since
the system is extensive, it is easy to show that for a large domain
the scaling is exponential:

Z (m,n)∼ µ
mn/2, (S1)

where mn/2 is the number of dimers, and µ is so-called molec-
ular freedom, or the effective number of orientations per dimer.
If the dimers did not constrain each other, they would indepen-
dently take vertical or horizontal orientations, resulting in µ = 2.
Since dimers do constrain each other, µ < 2, and Fowler and Rush-
brooke aimed to explicitly compute this number.

They constructed their computation as an enumeration of the
number of dimer tilings in a long narrow strip via constructing
recursion relations. For width 2, the recursion produces the Fi-
bonacci sequence with the estimate of µ ≈ φ ≈ 1.618, the golden
ratio, but for wider strips the recursions had to be worked out by
hand and took form of bulky multilinear expressions. Remarkably,
these expressions could be solved numerically using the Mallock
machine,3 an early analog computer, up to width 6, roughly con-
verging on µ ≈ 1.8. Molecular freedom calculations thus put the
lattice dimer model at the dawn of computational physics.

After several improvements on the computation of µ,4 its ex-
act value was finally computed in early 1960s a series of papers
by Fisher, Temperley, and Kasteleyn, thus “solving” the model.5–7

The full solution bears considerable similarity to the Onsager ex-
pression for the critical 2D Ising model,8 prompting further inter-
est from the statistical physics community. Dimer tilings inspired
the Resonating Valence Bond theory of superconductivity,9,10 and
brane tilings in string theory.11 Other work focused on extensions
of the dimer model to different domain geometries, computation
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of correlation functions, and finite-density dimers.

Dimers tilings don’t have long-range order in rectangular do-
mains,12 but the tiling structure can be radically different in do-
mains of a different shapes.1 For instance, in the “Aztec diamond”
domain (a square rotated by 45 degrees), the dimer configu-
rations demonstrate the striking “Arctic circle” effect, with the
dimers freezing into a brick pattern outside of the central cir-
cle.13,14 This large-scale effect of boundary conditions was later
explained within a much more general variational framework.15

Structure of dimer tilings is further elucidated with correla-
tion functions, computed with coarse grained field theory map-
pings,16 earlier Pfaffian methods,12 or later Grassmanian alge-
bra.17,18 These techniques compute the correlations at both short
and long distances, in the bulk as well as near the borders and
corners of the domain. They also allow introducing a finite num-
ber of monomers, or unpaired/empty sites, thus discussing tilings
at slightly less than 100% density.

Finite density tilings also attracted considerable interest. Rig-
orous mathematical proofs show that the dimer free energy does
not exhibit singularities as a function of density, i.e. there are
no ordering phase transitions.19,20 As well, a variety of expan-
sions have been developed to study finite-density free energy of
the dimer system,21–24 but they did not focus on short distance
correlations.

Aggregating the lessons from prior studies, we can more pre-
cisely formulate the question for the present study, the method
to address it, and the way to validate the answer. We are inter-
ested in the local structures (motifs) formed by dimers at finite
density. The dimer correlations can be converted into DEFs via
Landau-Gibbs free energy (see section below). We compute the
correlations with an automated combinatorial method of tensor
networks (see section below). In order to validate the tensor net-
work method, we use it to compute the value of molecular free-
dom µ and compare it to the exact analytical result (see section
below). As well, at full packing we compare our values of DEFs
with the exact results from correlation functions.

S2 Tensor Network Construction

We cast the lattice dimer model into a spin-like form, in which
each lattice site can be in one of five states s: empty e, left l,
right r, top t or bottom b. The latter four states correspond to
site occupation with half a dimer. Each half of a dimer needs
to match with the corresponding other half, fulfilling a local con-
straint. Apart from these constraints, the site is biased to be empty
or non-empty by regulation of the fugacity z, turning the compu-
tation into a weighted constrained summation problem (#SAT)
which we solve numerically via tensor network contraction.
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In a tensor network each node is a tensor of rank equal to the
node degree, and each link is a contraction of two tensors by the
corresponding indices. Main text Fig. 6 shows an example ten-
sor network for computations in this paper that is based on the
structure proposed in Ref.39. Our network consists of four types
of tensors: site tensors, vertical and horizontal coupling tensors,
and fugacity tensors. Each lattice site corresponds to a site ten-
sor δs1s2s3... that is a high-rank generalization of Kronecker delta:
its entries are 1 when all indices are identical and 0 otherwise.
The purpose of this unit tensor is to ensure that couplings from
all directions see the site in the same state, while simultaneously
summing over all possible states. Because of simplicity of its con-
struction, the rank of site tensor can be adjusted for different com-
putations as explained below.

Each site is connected to its four nearest neighbors on the
square lattice via the coupling tensors. A coupling tensor is equiv-
alent to a transfer matrix used in solving other lattice models.40

The possible configurations of lattice site states are either valid
or invalid. For valid configurations, the coupling tensor has an
entry 1, for invalid an entry 0. The coupling tensors are not sym-
metric, since exchanging the states of two adjacent sites does not
preserve the validity. Moreover, the validity check is different for
horizontally and vertically adjacent sites, so we construct the two
different coupling tensors explicitly elementwise.

For a horizontal coupling T h
s1s2

, if the left site is in “left” state,
then the right site needs to be in the “right” state, and vice versa.
This can be enforced by all other entries of the coupling in the
corresponding row and column being 0. All other combinations
of left and right state are allowed, with no relative preference
between them. The resulting coupling can be written down as
following:

T h
s1s2

=



1 1 0 1 1
0 0 1 0 0
1 1 0 1 1
1 1 0 1 1
1 1 0 1 1


, (S2)

where the index s1 (rows) is contracted with the site to the left
from coupling, and the index s2 (columns) with the site to the
right. Both indices run, in order, over site states {e, l,r, t,b}. The
vertical coupling tensor T v

s1s2
is constructed analogously and can

be written down as:

T v
s1s2

=



1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
0 0 0 1 0


, (S3)

where the index s1 (rows) is contracted with the site to the bottom
of the coupling, and the index s2 (columns) with the site to the
top.

Apart from the site and coupling tensors, we also include the
chemical potential (external field), in form of rank-1 tensors fs
attached to each site. A generic site in grand canonical ensemble
contributes a multiplicative factor z to the grand partition func-
tion if it is occupied and 1 if it’s empty. Here z≡ eβ µ is the fugacity

associated with the particle bath and is the only thermodynamic
free parameter used in the model. The corresponding fugacity
tensor can be written as:

fs =
1 z z z z

 . (S4)

Having specified the tensors and their pattern of connections in
the bulk of the lattice, we need to additionally specify the bound-
ary conditions. We consider rectangular lattices with two types
of boundary conditions: open and periodic. For open boundary
conditions, the edge sites are only subject to three constraints,
and corner sites are only subject to two constraints, allowing un-
paired dimer halves on the domain boundary, effectively “sticking
out” beyond the domain. For periodic boundary conditions, the
sites on the right edge are coupled to the ones on the left, and the
sites on the top edge are coupled to the bottom. For the valida-
tion computation we compare both types of boundary conditions
(see section below), whereas for the free energy computation we
only consider the periodic boundary condition. Boundary condi-
tions conclude the specification of the tensor network so it can be
contracted.

Contracting the tensor network results in a tensor of rank equal
to the number of unpaired links. There are no unpaired links in
the network of main text Fig. 6, so it contracts to a rank-0 tensor
(i.e., a scalar number) equal to the partition function Z . Comput-
ing other quantities from the tensor network requires modifying
it slightly as described below.

We construct tensor networks on computer via automated
Python scripts and then contract them with PyTNR package.39,41

PyTNR automatically determines the order of contractions and
combines them with Singular Value Decomposition (SVD) to re-
duce the tensor rank and dimensionality by discarding eigenval-
ues below a chosen threshold. We choose the threshold of 10−5

for most computations, thus making our method approximate.
Our method is also non-deterministic since the order of contrac-
tions in PyTNR is somewhat stochastic. We compensate for the
stochasticity by performing replica computations and computing
error bars.

S3 Model Validation

We validate our tensor network approach by computing the
molecular freedom µ. Molecular freedom is the scaling base of
the partition function, related to the system free energy and en-
tropy per site, and it has been computed exactly in Refs.5–7 for
an infinite rectangular domain. The exact result is µ = e2G/π ≈
1.792, where G is the Catalan constant. We compute a finite-
size approximation from the tensor network model at full pack-
ing. We enforce full packing by setting the fugacity tensor to be
fs =

0 1 1 1 1
 and thus prohibit empty sites. Since

avoiding empty sites also requires the domain to have an even
number of dimers, we consider rectangular domains of dimen-
sions (k)× (k+ 1). For each domain size we compute the parti-
tion function Z (k,k+ 1) and extract a finite-size approximation
to molecular freedom as following:

µ
BC
k = exp

(
lnZ (k,k+1)

k(k+1)/2

)
, (S5)
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Fig. S1 Validation of the tensor network model via computation of the

�nite-size molecular freedom. (a) Scatter plots represent the tensor net-

work computation of µBC
k with periodic (blue) and open (orange) bound-

ary conditions, while the green horizontal dashed line denotes the analytic

value µ ≈ 1.792. (b) Scatter plots represent the residual of the molecular

freedom ∆µ = (µBC
k −µ) on logarithmic scale, while the black dashed line

denotes the N−1 trend line for visual comparison. The computation is

performed on rectangular domains of size (k)× (k+ 1) for k = 2..15. All

error bars are much smaller than marker sizes, at about 10−4 for open

boundary conditions and 10−5 for periodic.

where BC denotes the boundary condition type (open or peri-
odic), as described above.

Fig. S1a presents the validation computation results. The re-
sults for open boundary conditions consistently and significantly
overcount the dimer configurations, since the dimers can “stick
out” outside the domain. On the other hand, the results for pe-
riodic boundary conditions indicate that the molecular freedom
nearly saturates the exact result for systems of size N = k(k+1) of
as small as 30.

Finiteness of the system implies that the computed quantities
are subject to systematic finite-size errors of varying magnitude.
We expect the error magnitude to increase for observables that
marginalize over more variables, thus having the smallest er-
ror for molecular freedom µ (effectively a zero-point function),
slightly higher for the density ρ (extracted from the one-point
function), and the highest for the Landau-Gibbs free energies βG
(extracted from the two-point function, see below). The scaling
of the error of µ is shown to decay as O

(
N−1) in Fig. S1b. The

slight step effect of the trend likely shows that µ is more sensitive
to the even dimension of the computation domain than the odd
dimension. We do not have analytic results for finite-size density
ρ for comparison. The Landau-Gibbs free energies at the highest
density of ρ = 100% can be compared to the exact analytic calcu-
lation of Fisher and Stephenson (horizontal arrows in Fig. 3b of
the main text, see below on converting the notation conventions
and finite-size scaling).12

The computation of molecular freedom at the largest system
size of 15× 16 = 240 sites involves tensor network enumeration
of 5240 ≈ O

(
10167) distinct states. Since most of these states in-

volve unmatched dimer halves, the number of configurations with
nonzero weight is roughly µ240/2 ≈ O

(
1030). However, the com-

putation at 100% density is actually not the hardest from the
point of view of tensor network contraction. Since the states
where any of the sites are empty can be easily dismissed in SVD,
this regime is less taxing on memory than slightly smaller den-
sity. In order to balance the needs for computation tractability
and reduction of finite size effects, we perform the computations
at finite density for system size of 9×10 = 90 sites, the results of
which are presented in the main text.

S4 Landau-Gibbs Free Energy

If a certain local motif of two dimers is more likely to be found
than the two dimers separately, it is said to be stabilized by the
DEFs. We can quantify the DEFs by computing the Landau-Gibbs
(LG) free energy from the two free energies:

βG(s;x,y) = βGmotif(s;x,y)−βGbare(s), (S6)

where βGbare(s) is the bare free energy of a site in state s (site
independent), and Gmotif(s;x,y) is the motif free energy of the site
(x,y) in state s, given a fixed reference dimer. Both free energies
depend on the fugacity z. The prefactor β fixes units to convert
between the energy scale and thermodynamic temperature.

Thermodynamically, we term the expression (S6) the Landau-
Gibbs free energy to highlight the grand canonical nature of the
dimer ensemble. In a grand canonical ensemble, we cannot move
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Fig. S2 Schematic representation of tensor networks used for computations of free energies. (a) In order to compute the bare free energy, we add

an external leg on an arbitrary site (green). Contracting this network results in the rank-1 tensor of e−βG
bare

(s) up to a normalization. (b) In order to

compute the motif free energy, we replace the fugacity tensors on two central sites with the alternative tensors f l and f r (blue and red, respectively),

and add external legs on various sites (x,y), one at a time. Contracting this network results in the rank-1 tensor of e−βG
motif

(s;x,y), up to a normalization.

a dimer to a different location; instead, we destroy it at an old
location and create it anew at the new one. If it is easy to create
a dimer at a certain location, given the placed reference dimer,
the LG free energy would be negative. If it is hard to create a
dimer, the LG free energy would be positive. If the difficulty of
creating a dimer does not depend on the reference dimer, the
LG free energy would be zero. Low free energy (high sea en-
tropy) regions of space show the effective interaction potential
of the two dimers. To better illustrate this potential and high-
light the symmetries, we color-code the positions of the centers
of the dimers rather than lattice sites in Fig. 3 of the main text.
We choose the color map to be gray at the center value βG = 0,
implying no attractive or repulsive effective dimer interactions.
The dimer interactions disappear at either low density or large
distance between the two dimers, implying that the placement of
those dimers would become independent.

We can compute the effective dimer interactions by introducing
modifications to the partition function expression (Eqn. 4 of the
main text), or, equivalently, the tensor network form of partition
function (Fig. 6 of the main text). In algebraic form, the two
free energies can be computed via Eqns. 6-7 of the main text.
The sums on the right hand side of the expressions evaluate to a
vector, which we divide by the sum of its elements to ensure the
normalization.

However, performing the computations in algebraic form is
cumbersome, so we convert them into tensor network form. In
order to not perform a sum in sx,y like in Eqn. 6 of the main text,
we add an external leg to the corresponding site tensor in posi-
tion (x,y) (green in Fig. S2a). The choice of the site (x,y) does not
affect the values of Gbare because of the unbroken translational
symmetry. Contracting that network results in a rank-1 tensor
(vector) that contains the un-normalized, unconditional 1-point
function. If we were to perform the remaining sum in sx,y, we
would recover the whole partition function Z , which thus serves
as the normalization.

In order to perform the conditional sum of Eqn. 7 of the main
text, we need to implement δ (ref) within the tensor network. In

order to do that, we replace two fugacity tensors in the center
of the network with, respectively, f l

s =
0 1 0 0 0

 and

f r
s =

0 0 1 0 0
 (blue and red in Fig. S2b), and then

add an external leg to different locations (x,y). The result of con-
traction is the un-normalized conditional 1-point function that de-
pends on the chosen site (x,y). In order to reconstruct the full free
energy landscape for a range of (x,y), we need to evaluate many
of such 1-point functions, as detailed in Section S6 below. The
normalization of the conditional 1-point function Zcond is differ-
ent from the original partition function Z , but is independent of
the site.

After computing the Landau-Gibbes free energies, we can com-
pare them to the exact analytical results of Fisher and Stephen-
son at full packing.12 Fisher and Stephenson used slightly differ-
ent notation and reported the correlation function Cab as arith-
metic difference between the joint probability distribution of two
dimers and the product of two marginal probabilities, normalized
by the product of the latter. We convert their convention into ours
as following:

βGFS
ab =− ln(1+Cab), (S7)

where a,b ∈ x,y represent the horizontal or vertical orientations
of the dimers and the value of Cab is taken directly from Table II
in Ref.12. Fisher and Stephenson show the correlation function at
the centers of the dimers, same as our convention in Fig. 3 of the
main text, which allows us to identify the motifs for comparison
to our Fig. 4 of the main text.

S5 Finite-Size Scaling

Fig. S3 shows the finite-size corrections to the LG free energy at
100% density. The LG free energies were largest by magnitude
for the densely packed motif (gray, negative) and the horizontally
shifted motif (green, positive), and the same free energies have
the largest residuals. By making a linear fit and extrapolating it,
we show that the LG free energies converge to the exact values
of Fisher and Stephenson, and the finite-size correction is at the
order of O

(
N−1), same as for the molecular freedom µ.

4 |Klishin and van Anders ESI



0 1/240 1/132 1/90 1/56 1/30
Inverse System Size 1/N

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
La

nd
au

-G
ibb

s F
re

e 
En

er
gy

 R
es

idu
al∆

β
G

Fig. S3 Finite-size scaling of the residual of the LG free energy ∆βG =

(βG−βGFS) with system size at 100% density. The inset shows the color

coding of the four local motifs, same as in the Fig. 4 of main text. For

the dense-packed (gray) and horizontally shifted (green) motifs linear �ts

in N−1 are shown, for the other two the data points are just connected

with straight lines. Error bars are 10−3 or smaller and are mostly smaller

than the markers.

S6 Multi-Marginalizing

While the tensor network contractions are highly optimized,
they are the bulk of our computation. To make this computa-
tion efficient, it is desirable to extract maximal amount of useful
information from the minimal number of contractions. In this
section we explain how we minimize the number of contractions
by taking advantage of the local and global symmetries of the
Landau-Gibbs free energy field, as well as the multi-marginalizing
technique to efficiently evaluate many conditional two-point func-
tions, which then behave as one-point functions.

The motif free energies Gmotif(s;x,y) allow us to evaluate the
Landau-Gibbs free energies for the placement of a dimer in po-
sition (x,y) with respect to the fixed dimer at any given fugacity
z. The free energies of finding two halves of a dimer have to be
equal due to the way the coupling tensors T h and T v are set up,
forming local translational symmetries:

Gmotif(l;x,y) = Gmotif(r;x+1,y),

Gmotif(b;x,y) = Gmotif(t;x,y+1). (S8)

Because of these symmetries, each site can supply information
about the one-point functions on the site itself and two adjacent
neighbors. By convention, on the site itself we use the values
Gmotif(l) and Gmotif(b), whereas for the neighbors to the left and
to the bottom we use the values Gmotif(r) and Gmotif(t), respec-
tively. Exploiting this redundancy makes it sufficient to only com-

Data Network

S S S S S S S S. . . 1

Layer

S S . . . S S 2

S . . . S 3

...
...

...
...

...
...

...
...

...

a

b

Fig. S4 Multi-marginalizing e�ciently computes many one-point func-

tions in a single tensor contraction. (a) The tensor network that encodes

the dimer model, color coding is identical to that in Figs. 6 (main text)

and S2. The system has global two-fold re�ection symmetries with re-

spect to the central vertical and horizontal axes (orange lines and arrows);

therefore, it is only necessary to compute the one-point functions from

one quadrant, here bottom-left (shaded gray). Site tensors in that quad-

rant have external legs attached in a checkerboard pattern (dark green

lines) to take advantage of the symmetry (S8). (b) The tensor network

that models the physical system can be abstracted as a �data network�.

We can be agnostic about the internal contents of the data network and

only characterize it by the output �data legs� (dark green lines). Direct

contraction of the data network gives an n-point function. In order to

�lter out the correlations from the n-point function, we connect the data
legs to the multi-layer readout network. In layer 1, the data legs are

connected to the tops of the S tensors (Eq. (S9)) in pairs. The data legs

from the bottom of the S tensors are connected to the S tensors of the

next layer, while the logic legs (light green lines) are connected to the

Kronecker tensors of the next layer. The lowest layer exposes one out-

put data leg and multiple logic legs that allow reading out marginalized

1-point functions from di�erent input data legs.
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pute one-point functions on half of all the sites in a checkerboard
pattern. Apart from this pattern, we use the global four-fold sym-
metry of the domain, ensured by the central placement of the
fixed dimer, to only explicitly compute one quadrant of the lattice
(shaded gray in Fig. S4, top).

Even with these symmetry reductions, we still need to compute
many conditional one-point functions. Naively, we can compute
the n-point function by creating n external legs on different lattice
sites and further marginalize it. However, intermediately storing
the n-point function requires 5n units of memory, which quickly
becomes prohibitively expensive. At the same time, all the extra
information about site correlations in the full n-point function is
unnecessary for the DEF analysis. For this analysis, we need to
filter out the cross-correlations and instead compute many one-
point functions in a single contraction.

We do this by using the method of multi-marginalizing, pre-
sented in Fig. S4.∗ In this method, the tensor network of sites,
couplings, and external fields (Fig. S4a) is abstracted out as a data
network, which can potentially represent any model. Apart from
the data network, we create a separate readout network (Fig. S4b)
as a superstructure on top of the model-driven data network that
filters out the cross-correlations between the readout legs, and
outputs the one-point functions in a more compact array. While
the n-point function is an array with 5n elements, the requisite n
one-point functions only require 5 ·2m elements, where m = log2 n,
thus saving lots of memory in filtering.

The main component of this filtering is the rank-4 switch tensor
Sab

cα . a,b,c are called data legs and have dimension 5, while the
new index α ∈ {0,1} is a binary logic leg of dimension 2. The up-
per indices are presented in the direction of the data network, the
lower indices in the direction of the output (see Figure). The logic
leg regulates the behavior of the rest of the legs in the following
way:

Sab
cα =

{
δ a

c 1b, α = 0

δ b
c 1a, α = 1

, (S9)

where δ is the regular Kronecker delta over the corresponding
indices and 1 is a vector of all 1’s. Depending on the value of the
binary index α, either one or the other data leg is marginalized
(contracted with 1). When the indices α and c are left free, the
contraction of this tensor with two data legs gives a 5× 2 array
that stores the two marginal probability distributions, i.e. two
one-point functions.

In order to extract more one-point functions, we build the
whole readout network out of multiple switch tensors S and Kno-
necker tensors δ , arranged in multiple layers. Layer 1 consists
only of S tensors (Fig. S4b) and reduces the number of data legs
in half. Layer 2 connects the data legs from layer 1 to new S ten-
sors, and the logic legs from layer 1 to a Kronecker tensor, thus
reducing the number of data legs in half again. Layer 3 and so
forth can be constructed in a similar fashion. The final layer m
consists of one S tensor and m−1 Kronecker tensors that together

∗Personal communication and implementation of A.S. Jermyn as part of PyTNR pack-
age.

expose one data leg and m logic legs. Choosing the binary index
value of each logic leg specifies the binary address of the input
data leg and thus allows us to read out the one-point function
from a target site. A readout network of m layers thus allows ad-
dressing n = 2m sites. It is most convenient to extract one-point
functions in number of a power of two. However, one can create a
larger readout network and render some of the binary addresses
mute by tracing out the unnecessary data legs (contracting them
with 1).

Increasing the number of readout legs and the size of the read-
out network carries an overhead of computational time, so far
poorly characterized. To minimize the total computational time,
it is better to extract a finite number of one-point functions per
contraction, and later stitch the multi-marginalizing results to-
gether. Multi-marginalizing doesn’t have rigorous prescriptions
on the optimal number of legs and layers, but for our system size
we find heuristically that using n = 8 legs works the best.

S7 Supplementary Discussion

Our system of lattice dimers had unphysically low amounts of sea
entropy, yet entropy still promoted local order. One might ask, is
there a model that is even less physical with even less sea entropy
in which entropy ceases to promote local order altogether?

One possible further reduction is to impose additional restric-
tions on the dimer orientations, such as the tatami constraint (no
more than three dimers not allowed to meet at a single corner).
However, introducing the tatami constraint makes the tilings ex-
tremely sensitive to boundary conditions, in many cases allowing
no more than 1 or 2 configurations.42 While this small number
of configurations allows resolving deterministic logical expres-
sions,42 it is subextensive in system size, unlike in the simple
dimer model, and thus gets rid of sea entropy. On the entropy
axis of Fig. 1 of the main text, the tatami model would lie even
further to the right, but it doesn’t have DEFs anymore. The discov-
ery of DEFs in lattice dimers thus on one side drastically expands
and unifies the range of systems that can entropically order, and
on the other side establishes a useful lower bound on this range,
searching beyond which is not meaningful.
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