Bis-imidazolium based poly(phenylene oxide) anion exchange membranes for fuel cells: the effect of cross-linking

Bencai Lin^{*,†}, Fei Xu[†], Fuqiang Chu[†], Yurong Ren[†], Jianning Ding[†], Feng Yan^{*,‡}

[†]Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China [‡] Department of Polymer Science and Engineering College of Chemistry, Chemical Engineering and

Materials Science Soochow University, Suzhou, 215123 (P. R. China)

*E-mail: linbencai@cczu.edu.cn (Bencai Lin); fyan@suda.edu.cn (Feng Yan)

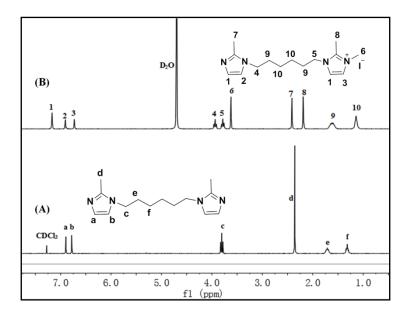


Figure S1. ¹H NMR spectra of 1, 6-bis(2-methylimidazol-1-yl) hexane (A) and 2, 3-dimethyl-1-

(6-(2-methylimidazol-1-yl)hexyl)-imidazolium iodide (B).

Figure S2. FT-IR spectra of BrPPO, Im-PPO-45 and cross-Im-PPO-45.

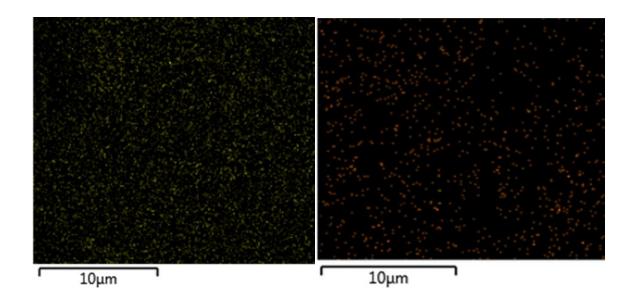


Figure S3. Distribution of nitrogen elements in the Im-PPO-45 (A) and Cross-Im-PPO-45 (B), as

obtained by using SEM and EDS mapping.

Table S1. The degradation of PPO-based membranes in Fenton's reagent (4 ppm Fe^{2+} and 3 % H_2O_2) at 60 °C for 120 h.

Membranes	Loss weight (%)
Im-PPO-25	19.27
Im-PPO-35	28.18
Im-PPO-45	39.44
Cross-Im-PPO-45	12.86
Cross-Im-PPO-60	16.05
Cross-Im-PPO-75	20.13