Electronic Supplementary Information (ESI) for

Ultrafast Li-Ion Migration in Holey-Graphene-Based Composites

Constructed by A Generalized Ex-Situ Method towards High

Capacity Energy Storage

Chengling Zhu,^{a1} Zeyu Hui,^{a1} Hui Pan,^a Shenmin Zhu,^{*a} Qing Zhang,^b Jianfeng Mao,^{*b} Zaiping Guo,^{*bc} Yao Li,^a Muhammad Imtiaz^{ad} and Zhixin Chen^c

^aState Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: smzhu@sjtu.edu.cn

- ^bInstitute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong 2522, Australia. E-mail: jmao@uow.edu.au; zguo@uow.edu.au
- ^cEngineering Materials Institute, School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, 2522, Australia

^dDepartment of Physics, Islamia College Peshawar, Peshawar 25120, Pakistan

¹These authors contributed equally to this work.

Fig. S1 (a) The schematic synthesis route of Fe_3O_4 hydrosol. (b) A simple demonstration to show the superparamagnetism of the Fe_3O_4 hydrosol, which is magnetofluid in fact.

Fig. S2 TEM images and SAED pattern of the Fe_3O_4 nanoparticles.

Fig. S3 (a) The zeta potential of Fe_3O_4 in the hydrosol, original and after hydrothermal process. This hydrothermal experiment was conducted on the Fe_3O_4 hydrosol solely to test its stability. (b) The zeta potential of GO and hGO.

Fig. S4 SEM images of Fe_3O_4/G in (a) micron-scale and (b) submicron scale.

Fig. S5 TEM images of (a) $Fe_3O_4@3DhG$ and (b) Fe_3O_4/G that rGO layers can be identified. (c, d) The line profiles of (a) and (b), respectively, with the orange boxes indicating rGO fringes.

Fig. S6 HRTEM image of Fe₃O₄/G.

Fig. S7 The nitrogen adsorption isotherms of $Fe_3O_4@3DhG$ and Fe_3O_4/G .

Fig. S8 (a) FT-IR spectra of hGO (red) and GO (blue). (b) The magnified part of (a) between $800-1500 \text{ cm}^{-1}$.

Fig. S9 Photos of $Fe_3O_4@3DhG$ and Fe_3O_4/G after hydrothermal process. Many uncombined Fe_3O_4 NPs were found in the container of Fe_3O_4/G , and were removed after rinsing.

Fig. S10 The relation between the Fe_3O_4 addition and the mass ratio of Fe_3O_4 in products.

Fig. S11 TEM images of the (a) SnO_2 NPs, (b) δ -MnO₂ NPs and (c) MoS₂ NSs.

Fig. S12 The zeta potential of SnO_2 NPs, δ -MnO₂ NPs and MoS₂ NSs in corresponding hydrosols.

Fig. S13 The coulombic efficiency of Fe₃O₄@3DhG and Fe₃O₄/G half cells at 0.2 A g^{-1} .

Fig. S14 SEM images of (a) 0.3-Fe₃O₄@3DhG, (b) Fe₃O₄@3DhG, and (c) 0.9-Fe₃O₄@3DhG.

Fig. S15 (a) CV curves of Fe_3O_4/G at scan rates of 1–40 mV s⁻¹. (b) The calculated contribution of surface capacitive effect of $Fe_3O_4@3DhG$ and (inset) Fe_3O_4/G at 1 mV s⁻¹.

Fig. S16 (a) The example of linear fitting of $i/v^{1/2}$ vs. $v^{1/2}$ based on the data in Fig. 3a. The solved (b) k_1 - and (c) k_2 -value vs. potential.

Fig. S17 The experimental and fitted Nyquist plots of $Fe_3O_4@3DhG$ and Fe_3O_4/G before cycling test.

Active	Loading Content	Particle Size	Canacity	Cycle Number	Current	Reference
Materials			Capacity		Density	
	(wt%)	(nm)	$(mAh g^{-1})$		$(A g^{-1})$	
SnO ₂	48	5	924	200	0.1	1
			505	1000	1	1
Si	32.8	<100	1261	70	0.05	2
MnO	84	100-200	1202	100	0.2	3
			812	1000	2	
Co ₃ O ₄	76.2	270	600	500	1	4
Co ₃ S ₄	70.8	30	710	200	0.5	5
ZnO	58	3.5	650	100	0.0978	6
Fe ₂ O ₃	80	400	758	300	0.2	7
Fe ₃ O ₄ +TiO ₂	60	6	703	200	0.5	8
Fe ₃ O ₄	70.5	100	1048	50	0.2	9
			1080	450	1	
Fe ₃ O ₄	83.7	200	1059	150	0.093	10
Fe ₃ O ₄	63	57.6	550	60	0.375	11
Fe ₃ O ₄	79.4	10	1516	200	0.2	This
			554	2000	5	Work

Table S1 The composition and performance of the reported**graphene-based**compositessynthesizedby*ex-situ-*combinedmethod for LIB anodes.

Composition	Synthesis Route	Loading Content	Particle Size (nm)	Capacity	Cycle Number	Current Density	Reference
-		(wt%)		$(mAh g^{-1})$		$(A g^{-1})$	
Fe ₃ O ₄ @carbon microboxes	ex situ	/	650	857	100	0.1	12
Fa O nanoroda/rGO	in situ	75	10-80	1149	100	0.1	- 13
re ₃ 0 ₄ hanorous/100				1053	250	0.5	
Fe ₃ O ₄ -Fe@Bamboo-like CNT	in situ	34.4	70	764.1	100	0.3	14
Fe ₃ O ₄ /carbon/CNT	in situ	36.7	20	1317	130	0.1	- 15
microspheres				525	300	5	
Fe ₂ O ₂ /N ₂ doped carbon	in situ	55	5	1963	170	0.1	- 16
				1741	600	1	
graphene@Fe ₃ O ₄ /amorphous carbon	in situ	37.4	2-3	853	500	0.2	17
Es O N danad graphana		73.5	15	~1,200	150	0.1	- 18
re ₃ O ₄ /N-doped graphene	in situ			>900	1000	3	
Fe ₃ O ₄ /graphene foam	in situ	79.4	20-180	1220	500	1	19
hollow Fe ₃ O ₄ /carbon	in situ	67	100-12 0	1300	100	0.1	20
	.,	27.7	20	780	150	0.5	- 21
Fe ₃ O ₄ /C nanofibers	ex situ	27.7	30	611	300	1	
Fe ₃ O ₄ nanorods/N-doped graphene	in situ	85	20	929	50	0.1	22
	in situ	74.3	15	1070	160	0.2	- 23
Fe ₃ O ₄ /graphene				445	600	2	
Graphene-Wrapped Fe ₃ O ₄ - Graphene Nanoribbons	in situ	60	10	708	300	0.4	24
Fe ₃ O ₄ @Polypyrrole	in situ	88.7	650	652	500	2	- 25
Nanocages				950	100	0.2	
Fr. O. (Crankens New sikkans	in situ	58	6	1700	100	0.1	- 26
Fe ₃ O ₄ /Graphene Nanoribbons				1058	100	1	
	ex situ	73.4	10	1413	100	1	- 27
Fe ₃ O ₄ /Few layer Graphene				768	100	5	
γ-Fe ₂ O ₃ /RGO	in situ	64	50	830	500	0.5	28
	in situ	/	400	1176	200	0.1	- 29
yolk-shell octahedron				744	500	1	
Fe ₂ O ₃ /C hollow microfibers	in situ	/	100	997.8	200	1	30
hollow Fe ₂ O ₃ /C Nanofibers	in situ	62	17	812	300	1	31
Porous Fe ₂ O ₃	in situ	66.7	20.10	1129	130	0.2	32
Nanoframeworks/Graphene			20-40	523.5	1200	5	
nitridated α-Fe ₂ O ₃ nanorods/carbon cloth	in situ	/	100-30 0	332	100	5	33

Table S2 The composition and performance of the reported ironoxide-graphene composites for LIB anodes in recent years.

Porous α-Fe ₂ O ₃ nanorods/CNT/graphene	in situ	/	50	~1200	300	0.2	34
Fe ₂ O ₃ /few layered graphene	ex situ	~75	28	729	300	0.2	7
Monolithic Fe ₂ O ₃ /graphene hybrid	in situ	42	30-50	810	100	0.1	35
α-Fe ₂ O ₃ /GO/CNTs	in situ	83	50	875	100	0.2	36
	in situ	48.3	180	1111.6	350	0.2	37
a-re ₂ O ₃ /Graphene				658.5	200	1	
a-Fe ₂ O ₃ Hollow	in situ	52	200	916	100	0.5	- 38
Nanobarrels/rGO				478	1000	5	
Hollow Fe ₂ O ₃ /N-Doped	in situ	86	30	1483	100	0.1	- 39
Graphene				729	300	1	
Fe ₂ O ₃ /Fe ₃ C–Graphene Thin	in situ	24	40	984	100	0.17	- 40
Films				518	1000	6.6	
F. 0.011/ 0.0	in situ	81.4	200	1135	200	1	- 41
FeOOH/rGO				783	200	5	
	ex situ	70.4	10	1516	200	0.2	This Work
$\operatorname{Fe_{3}U_{4}(\underline{a})3DhG}$		/9.4		554	2000	5	

Reference:

- 1 C. Zhu, S. Zhu, K. Zhang, Z. Hui, H. Pan, Z. Chen, Y. Li, D. Zhang and D.-W. Wang, Sci. Rep., 2016, 6, 25829.
- 2 H. Tang, Y. Zhang, Q. Xiong, J. Cheng, Q. Zhang, X. Wang, C. Gu and J. Tu, Electrochim. Acta, 2015, 156, 86-93.
- 3 Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu, H. Wu, H. Liu and S. Dou, Adv. Funct. Mater., 2016, 26, 7754-7765.
- 4 H. Sun, X. Sun, T. Hu, M. Yu, F. Lu and J. Lian, J. Phys. Chem. C, 2014, 118, 2263-2272.
- 5 Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai and J. Bao, J. Mater. Chem. A, 2015, 3, 6787-6791.
- 6 R. Guo, W. Yue, Y. An, Y. Ren and X. Yan, Electrochim. Acta, 2014, 135, 161-167.
- 7 Y. Wang, L. Yang, R. Hu, W. Sun, J. Liu, L. Ouyang, B. Yuan, H. Wang and M. Zhu, *J. Power Sources*, 2015, 288, 314-319.
- 8 L. Pan, X. D. Zhu, X. M. Xie and Y. T. Liu, Adv. Funct. Mater., 2015, 25, 3341-3350.
- 9 Y. Yang, J. Li, D. Chen and J. Zhao, ACS Appl. Mater. Interfaces, 2016, 8, 26730-26739.
- 10 W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng and K. Müllen, Adv. Mater., 2013, 25, 2909-2914.
- 11 S. Petnikota, H. Maseed, V. Srikanth, M. Reddy, S. Adams, M. Srinivasan and B. Chowdari, *J. Phys. Chem. C*, 2017, 121, 3778-3789.
- 12 H. Tian, H. Liu, T. Yang, J.-P. Veder, G. Wang, M. Hu, S. Wang, M. Jaroniec and J. Liu, *Mater. Chem. Front.*, 2017, 1, 823-830.
- 13 W. Huang, X. Xiao, C. Engelbrekt, M. Zhang, S. Li, J. Ulstrup, L. Ci, J. Feng, P. Si and Q. Chi, *Mater. Chem. Front.*, 2017, 1, 1185-1193.
- 14 L. Du, C. Xu, J. Liu, Y. Lan and P. Chen, Nanoscale, 2017, 9, 14376-14384.
- 15 W. Han, X. Qin, J. Wu, Q. Li, M. Liu, Y. Xia, H. Du, B. Li and F. Kang, Nano Research, 2018, 11, 892-904.
- 16 Y. Wang, Y. Gao, J. Shao, R. Holze, Z. Chen, Y. Yun, Q. Qu and H. Zheng, Journal of Materials Chemistry A, 2018.
- 17 C. Li, Z. Li, X. Ye, X. Yang, G. Zhang and Z. Li, Chem. Eng. J., 2018, 334, 1614-1620.
- 18 W. Qi, X. Li, H. Li, W. Wu, P. Li, Y. Wu, C. Kuang, S. Zhou and X. Li, Nano Research, 2017, 10, 2923-2933.

- 19 Y. Huang, Z. Xu, J. Mai, T.-K. Lau, X. Lu, Y.-J. Hsu, Y. Chen, A. C. Lee, Y. Hou and Y. S. Meng, *Nano Energy*, 2017, 41, 426-433.
- 20 Z. Yang, D. Su, J. Yang and J. Wang, J. Power Sources, 2017, 363, 161-167.
- 21 Q. Wu, R. Zhao, X. Zhang, W. Li, R. Xu, G. Diao and M. Chen, J. Power Sources, 2017, 359, 7-16.
- 22 J. Jiao, W. Qiu, J. Tang, L. Chen and L. Jing, Nano Research, 2016, 9, 1256-1266.
- 23 Y. Dong, K. C. Yung, R. Ma, X. Yang, Y.-S. Chui, J.-M. Lee and J. A. Zapien, Carbon, 2015, 86, 310-317.
- 24 L. Li, A. Kovalchuk, H. Fei, Z. Peng, Y. Li, N. D. Kim, C. Xiang, Y. Yang, G. Ruan and J. M. Tour, *Adv. Energy Mater.*, 2015, **5**.
- 25 J. Liu, X. Xu, R. Hu, L. Yang and M. Zhu, Advanced Energy Materials, 2016, 6.
- 26 X. Zhao, X. Li, S. Zhang, J. Long, Y. Huang, R. Wang and J. Sha, J. Mater. Chem. A, 2017, 5, 23592-23599.
- 27 M. Huang, C. Chen, S. Wu and X. Tian, J. Mater. Chem. A, 2017, 5, 23035-23042.
- 28 B. Xu, X. Guan, L. Y. Zhang, X. Liu, Z. Jiao, X. Liu, X. Hu and X. Zhao, J. Mater. Chem. A, 2018, 6, 4048-4054.
- 29 W. Guo, W. Sun, L.-P. Lv, S. Kong and Y. Wang, ACS Nano, 2017, 11, 4198-4205.
- 30 J. Sun, C. Lv, F. Lv, S. Chen, D. Li, Z. Guo, W. Han, D. Yang and S. Guo, ACS Nano, 2017, 11, 6186-6193.
- 31 J. S. Cho, Y. J. Hong and Y. C. Kang, ACS Nano, 2015, 9, 4026-4035.
- 32 T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao and Y. Xu, ACS Nano, 2017, 11, 5140-5147.
- 33 M.-S. Balogun, Z. Wu, Y. Luo, W. Qiu, X. Fan, B. Long, M. Huang, P. Liu and Y. Tong, J. Power Sources, 2016, 308, 7-17.
- 34 M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, H. J. Fan and Z. X. Shen, Nano Energy, 2014, 9, 364-372.
- 35 L. Li, G. Zhou, Z. Weng, X.-Y. Shan, F. Li and H.-M. Cheng, Carbon, 2014, 67, 500-507.
- 36 X. Ma, M. Zhang, C. Liang, Y. Li, J. Wu and R. Che, ACS Appl. Mater. Interfaces, 2015, 7, 24191-24196.
- 37 X. Qi, H.-B. Zhang, J. Xu, X. Wu, D. Yang, J. Qu and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 2017, 9, 11025-11034.
- 38 K. S. Lee, S. Park, W. Lee and Y. S. Yoon, ACS Appl. Mater. Interfaces, 2016, 8, 2027-2034.
- 39 L. Liu, X. Yang, C. Lv, A. Zhu, X. Zhu, S. Guo, C. Chen and D. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 7047-7053.
- 40 Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, M. J. Yacaman and J. M. Tour, ACS Nano, 2014, 8, 3939-3946.
- 41 H. Qi, L. Cao, J. Li, J. Huang, Z. Xu, Y. Cheng, X. Kong and K. Yanagisawa, ACS Appl. Mater. Interfaces, 2016, 8, 35253-35263.