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Fig. S1: Statistics of the original-research journal articles on NASICONs as Na-ion conductors 
from 1976 to 2015. Each bar represents 5 years. Source of the data: Web of ScienceTM. 

 

According to the number of original-research journal articles on NASICONs as Na-ion 

conductors (Fig. S1), the most active period for NASICON research was 1985–1990, when NIBs 

were still competing with LIBs. However, due to the success and commercialization of LIBs in 

the 1990s, research on NIBs declined. The situation did not improve early in this century, as 

β/β”-aluminas were commercialized for high-temperature sodium-based batteries and research 

interest in NASICONs became more sporadic. It is only in the last couple of years that research 

on NASICONs has witnessed a revival (see also the main manuscript).    



 

 

 

Fig. S2: The fitted results of a) NZSP0.3, b) NZSP0.4 and c) NZSP0.5  by Rietveld refinement 



Fig. S2 shows the fitted results of a) NZSP0.3, b) NZSP0.4 and c) NZSP0.5. The reference 

standard XRD patterns are ICSD:000473 (monoclinic NASICON, Na3.0Zr2.0Si2.0PO12, calculated, 

blue columns) and ICSD:062386 (rhombohedral NASICON,  Na3.35Zr2.0Si2.35P0.65O12, calculated, 

black columns). The experimental XRD data are in blue lines, while the fitted results are in red 

lines.     



 

  

  



 

   

Fig. S3: Comparison of XRD patterns of NZSPx measured at 25 °C and 200°C. a) NZSP0, b) 
NZSP0.2, c) NZSP0.4 and d) NZSP0.6. 

 



The XRD patterns between 25 °C and 200°C for NZSP0, NZSP0.2, NZSP0.4 and NZSP0.6 are 

compared in Fig. S3. At 25 °C, NZSP0 and NZSP0.2 show the monoclinic splitting of the 

reflections. NZSP0.4 reveals a mixture of the monoclinic and rhombohedral phases and NZSP0.6 

shows only rhombohedral reflections. At 200 °C, all samples exhibit the rhombohedral 

reflections, indicating the occurrence of a phase transition when the temperature changes from 

200 °C to room temperature for NZSP0, NZSP0.2 and NZSP0.4. This transition is in accordance 

with earlier studies.1 In the present study, the investigation is more systematic. 







 

Fig. S4. Lattice parameters a (circles) and c (squares) as a function of temperature. a) NZSP0, b) 
NZSP0.2, c) NZSP0.3, d) NZSP0.4, e) NZSP0.5 and f) NZSP0.6.    



Fig. S4 shows the thermal expansions of the lattice parameters a and c of NZSPx, which are 

determined by analysis of high-temperature XRD. The thermal expansion coefficient (TEC) 

values of both crystal lattice directions are calculated and compiled in main manuscript Table 1.  

 

 

 

Fig. S5: Microstructure of the NZSP0.4 powder calcined at 800 °C for 3 h. 

Fig. S5 shows the primary particles of the NZSP0.4 powder. The particles in the powder are 

small (< 100 nm), homogeneous, and almost spherical in shape, which are favorable 

morphologies for the further processing of the ceramics. 

 



   

  



 

Fig. S6: Nyquist plots of impedance spectra recorded at 25 °C with Au electrodes by a high-
frequency (HF) and a low-frequency (LF) testing system (red cycles and blue cycles, respectively). 
a) NZSP0, b) NZSP0.2, c) NZSP0.3, d) NZSP0.5, e) NZSP0.6. The impedance spectra have been 
corrected for the dimensional differences of the samples.  

 

Fig. S6 shows the Nyquist plots of the sintered samples of NZSP0, NZSP0.2, NZSP0.3, NZSP0.5 

and NZSP0.6. For NZSP0 it is possible that the relaxation times of the circuit elements 

representing the bulk and grain boundary are too close to each other. The semi-circles 

representing Rb and Rgb are merged into one semi-circle, which makes them experimentally 

indistinguishable. Only simulated data of the σb can be determined from the Nyquist plot. For 

the other NZSPx samples, two semi-circles can be clearly distinguished and the σb can be easily 

separated from the σtotal.     



 

 

 

 



Fig. S7: Experimental Nyquist plot of the impedance spectra for an NZSP0.4 (diameter of 0.678 
cm and thickness of 0.124 cm) recorded at a) -80 °C, b) -60 °C, c) -40 °C and d) -20 °C by a 
normal-frequency analyzer. 

 

Nyquist plots of the sample tested at from -80 °C to -20 °C are shown in Fig. S7. At -80 °C, the 

semi-circle representing the bulk component is still almost complete like the situation in the 

main manuscript Fig. 1c (-100 °C). While it is getting out of the testing range with the increasing 

of the temperature because the time constant (τ) of the bulk component is shifting to higher 

frequency range (the maximum frequency of the current testing is 10 MHz) because of the 

decreased resistance of the samples at higher temperatures.2 At -20 °C, only the joint part of 

the bulk and grain-boundary component can be recognized in the Nyquist plot. At higher 

temperatures, the bulk component will be totally disappeared in the Nyquist plot, which results 

in the imprecise determination of the σbulk.   

 

 



 

 

Fig. S8. (a) The high-angle annular-dark-field image of NVP grains in the electrode of a full-
ceramic battery and (b) the simultaneously collected elemental distribution maps of vanadium 
(green) plus  carbon (orange) showing coverage of carbon to NVP grains.   

 

Every NVP particle in the electrodes is covered by a “shell” of carbon, as detected by energy-

dispersive X-ray spectroscopy (EDS) in a scanning transmission electron microscopy (STEM) and 

shown in Fig. S8. The “shell” is not fully homogeneous. However, it has a minimum thickness of 

about 5 nm, which ensures the electronic conduction within the electrodes. 



 

 

 

Fig. S9: Experimental Nyquist plot of the impedance spectra for the full cell in the main 
manuscript Fig. 6. a) Full spectra. b) Partially enlarged spectra.  

Fig. S9 shows the experimental Nyquist plot of the impedance spectra for the full cell in the 

main manuscript Fig. 6, before (red) and after cycling (blue). From the enlarged spectra (Fig. 

S9b) it can be seen the first semi-arc, the right intercept of which should represents the ohmic 

resistance of the cell because they almost equals to the resistance of the NZSP0.4 substrate. 

From Fig. S9b it can be observed that the ohmic resistance of the cell has only very slight 

change after cycling. This is understandable because the charge-discharge cycle should have no 

apparent influence on NZSP0.4 itself. However, from the full spectra it can be observed that 



after cycling, the polarization resistance of the cell increased, which is quite possible because 

the interface resistance between anode/cathode and electrolyte is increased. And this is quite 

possible coming from the dimensional change of NVP during charging and discharging.         

  

  

Fig. S10: The microstructure of NVP and NZSP0.4 grains in the electrode of a full-ceramic 
battery and their elemental distribution maps acquired by EDS in the STEM.   

 

Fig. S10 shows the microstructure of NVP and NZSP0.4 grains in the electrode of a full-ceramic 

battery and the element distribution observed by STEM after charge-discharge cycling 

(between 2.2 and 0.5 V, 10 cycles at 0.25 C, 10 cycles at 0.5 C, and 10 cycles at 1 C). The 

interface between NZSP0.4 and NVP is neat and sharp, indicating no obvious solid-state 

reactions or diffusions between NZSP0.4 and NVP after cell operation (Fig. S10 b and c). 



Moreover, according to the element distribution of carbon (Fig. S10d), carbon mainly covers 

the NVP particles. The signal of carbon on NZSP0.4 is very weak and can be regarded as 

background noise. It agrees well with the expected results, because NVP is prepared by 

Pechini’s method3 and the organic additives used are carburized to a certain amount during 

calcination in Ar/2% H2, whereas there is no carbon introduced to NZSP0.4 during the 

preparation processes of electrodes.    
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