Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction

Shichen Xu,^a Cuncai Lv,^b Tong He,^a Zhipeng Huang,^{a*} and Chi Zhang^{a*}

^{a.} School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China.

^{b.} Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding, 071002, China. Corresponding author. Zhipeng Huang (<u>zphuang@tongji.edu.cn</u>), Chi Zhang (<u>chizhang@tongji.edu.cn</u>)

Electronic Supplementary Information (ESI)

Figure S1. (a) EDS spectrum, (b) element content, and (b) SEM image of $CoO_x(Ce)$.

Figure S2. (a, b, c) SEM images and (d,e) TEM image of CoO_x . (f) Size distribution histogram of CoO_x grains derived TEM images.

Figure S3. XRD pattern of $CoO_x(Ce)$, CoO_x , and bare CFP.

FigureS4. Raman spectra of $CoO_x(Ce)$ and CoO_x .

Figure S5. Polarization curves of $CoO_x(Ce)$ synthesized (a) at different temperatures and (b) with different atomic ratio of Co to Ce.

Electrocatalysts	η ₁₀ (mV)	η ₂₀ (mV)	η ₁₀₀ (mV)	Tafel slope (mV/dec)	Electrolyte (M KOH)
CoO _x (Ce) (This work)	229	261	302	63.7	1.0
CoO _x PHCS ^[1]		270	300	40	1.0
CeO ₂ /CoSe ₂ ^[2]	288	324		44	0.1
Co ₃ O ₄ [3]	270			70	0.1
Co ₃ O ₄ /Co-Fe oxide DSNBs ^[4]	297			61	1.0
Co-B@CoO/Ti ^[5]	190			78	1.0
CoCH/NF ^[6]	332			126	1.0
NiFe-NS ^[7]	304	333		40	1.0
CoS@NF ^[8]	297	330		106	1.0
Co(OH) ₂ -Co ₂ [Fe(CN) ₆] ^[9]	304			38	1.0
Co/Fe ^[10]	330	350		37	1.0
Ni ₂ Fe-LDHs ^[11]	289			39	1.0
CoP@RGO ^[12]	280	320	440	75	1.0
CuO/Co ₃ O ₄ ^[13]	227	290	360		1.0
NiCoO ₂ /CoO/Ni ₃ N ^[14]	247			35	1.0
NiO/CoN PINWs ^[15]	300	325	385	35	1.0

 Table S1. Performance of typical reported OER electrocatalysts in alkaline media.

Figure S6. Equivalent circuit used to fit the EIS data. R_0 is series resistance, CPE_1 and R_1 are the constant phase element and the resistance describing electron transport at the substrate/catalyst interface, respectively, CPE_{dl} is the constant phase element of the catalyst/electrolyte interface, and R_{ct} is the charge-transfer resistance at the catalyst/electrolyte interface.

Sample	R _s (Ω)	Q1 (F cm ⁻² S ⁿ⁻¹)	n ₁	R ₁ (Ω)	Q _{dl} (F cm ⁻² S ⁿ⁻¹)	n _{dl}	R _{ct} (Ω)
CoO _x (Ce)	2.313	4.19E-5	0.0395	3.462	0.7881	0.5783	15.2
CoO _x	2.436	2.57E-5	0.0216	4.279	0.8149	0.6155	70.8

Table S2. Values of equivalent circuit elements resulted from fitting of EIS data.

Figure S7. CV of (a) $CoO_x(Ce)$ and (b) CoO_x measured with different scan rates.

Figure S8. Temperature dependent polarization curves of (a) $CoO_x(Ce)$ and (b) CoO_x .

Figure S9. (a,b) TEM image of post-OER $CoO_x(Ce)$. SAED pattern of (c) post-OER $CoO_x(Ce)$ and (d) pristine $CoO_x(Ce)$. (e) STEM image of post-OER $CoO_x(Ce)$. EDS mapping of (f) Co, (g) Ce), and (h) O from post-OER $CoO_x(Ce)$.

Figure S10. XPS of post-OER $CoO_x(Ce)$.

References

- [1] H. Xia, Z. P. Huang, C. C. Lv and C. Zhang, ACS Catal., 2017, 7(12), 8205-8213.
- [2] Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, Small, 2015, 11, 182-188.
- [3] Y. Yu, J. Zhang, M. Zhong and S. Guo, *Electrocatalysis*, 2018, 9, 653-661.
- [4] X. Wang, L. Yu, B. Y. Guan, S. Song and X. W. Lou, *Adv. Mater.*, 2018, **30**, 1801211.
- [5] W. Lu, T. Liu, L. Xie, C. Tang, D. Liu, S. Hao, F. Qu, G. Du, Y. J. Ma, A. M. Asiri, and X. P. Sun, *Small*, 2017, 13, 1700805.
- [6] M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren, Z. Liu, A. M. Asiri, X. Xiong and X. Sun, *Nanoscale*, 2017, 9, 16612-16615.
- [7] F. Song and X. Hu, Nat. Commun., 2014, 5, 4477.
- [8] P. Guo, Y. X. Wu, W. M. Lau, H. Liu and L. M. Liu, *Journal of Alloys and Compounds*, 2017, 723, 772-778.
- [9] F. Lyu, Y. Bai, Q. Wang, L. Wang, X. Zhang and Y. Yin, *Materials Today Chemistry*, 2019, 11, 112-118.
- [10] M. Xiong and D. G. Ivey, *Electrochimica Acta.*, 2018, 260, 872-881.
- [11] H. Zhong, X. Cheng, H. Xu, L. Li, D. Li, P. Tang, V. Na and Y. Feng, *Electrochimica Acta.*, 2017, 258, 554-560.
- [12] G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu and J. Li, J. Am. Chem. Soc., 2016, 138, 14686-14693.
- [13] X. Li, G. Guan, X. Du, J. Cao, X. Hao, X. Ma, A. D. Jagadale and A. Abudula, *Chem. Commun.*, 2015, **51**, 15012-15014.
- [14] Y. Li, L. Hu, W. Zheng, X. Peng, M. Liu, P. K. Chu, L.Y and S. Lee, *Nano Energy*, 2018, 52, 360-368.
- [15] J. Yin, Y. Li, F. Lv, Q. Fan, Y. Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, ACS Nano., 2017, 11, 2275-2283.