Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Facile CuS Decorated Ti₃C₂ MXene with Enhanced Performance

for Asymmetric Supercapacitor

Zhihu Pan,^a Fa Cao, ^a Xing Hu,^a Xiaohong Ji^{a,b*}

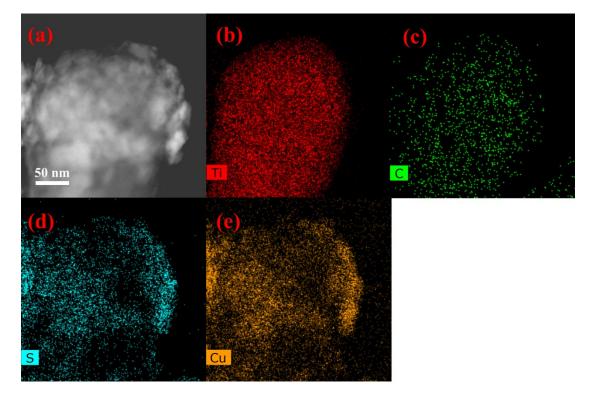
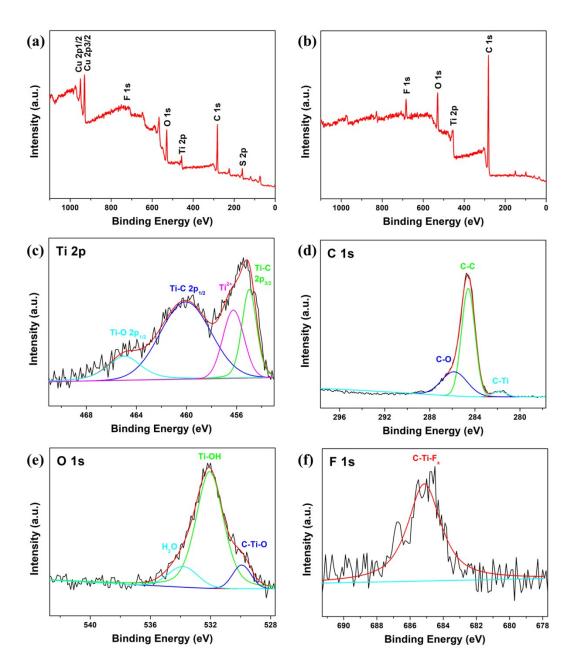
^a School of Materials Science and Engineering, South China University of Technology,

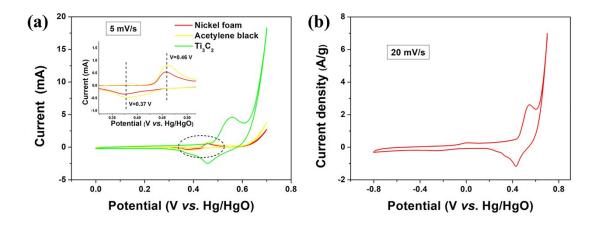
Guangzhou 510641, China.

^b State Key Laboratory of Luminescent Materials and Devices, South China University of

Technology, Guangzhou 510641, China.

*E-mail: jxhong@scut.edu.cn


Figure S1. (a) TEM image of TC-9 and elemental mapping images of (b) Ti, (c) C, (d) S and

(e) Cu.

Figure S2. XPS survey spectra (a) TC-9 and (b) Ti_3C_2 . High resolution XPS spectra of Ti_3C_2 :

(c) Ti 2p, (d) C 1s, (e) O 1s, and (f) F 1s.

Figure S3. (a) CV curves of nickel foam, acetylene black and Ti_3C_2 electrodes at a scan rate of 5 mV/s, the inset is the CV curves of nickel foam and acetylene black. (b) CV curve of Ti_3C_2 in the potential range -0.8 - 07 V (the scan rate was 20 mV/s).

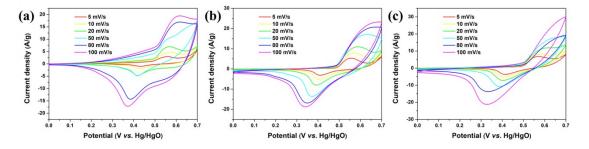
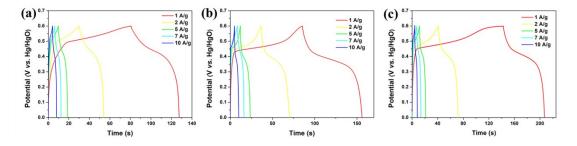



Figure S4. CV curves of the (a) CuS, (b) TC-6 and (c) TC-12 electrodes at various scan rates

of 5, 10, 20, 50, 80 and 100 mV/s.

Figure S5. GCD curves of the (a) CuS and (b) TC-6 and (c) TC-12 electrodes at various current densities of 1, 2, 5, 7 and 10 A/g.

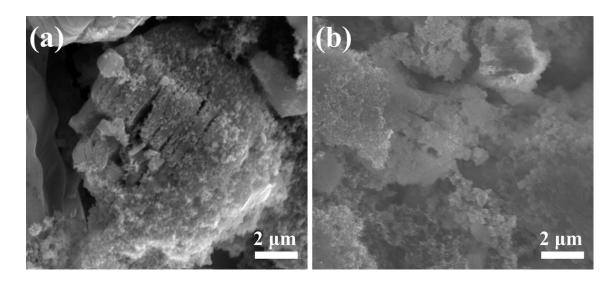


Figure S6. The SEM image of TC-9 electrode (a) before and (b) after a 5000-cycle test at 5

<u>A/g.</u>

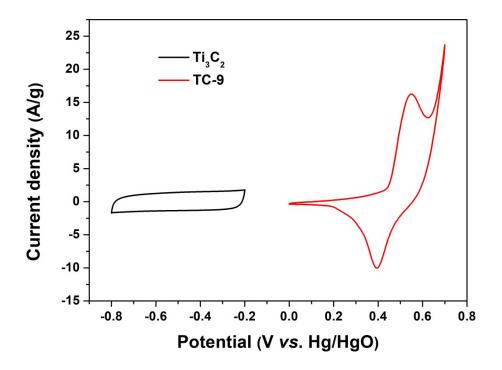
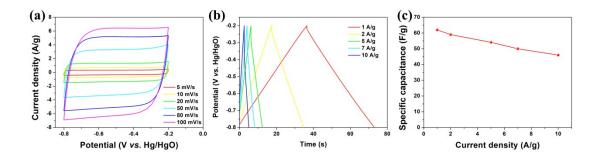



Figure S7. CV curves of Ti_3C_2 and TC-9 electrodes in different potential range at scan rate of 20 mV/s.

Figure S8. (a) CV curve of Ti_3C_2 in the potential range of -0.8 to -0.2 V; (b) GCD curves of

the Ti_3C_2 in the potential range of -0.8 to -0.2 V. (c) Specific capacities of the Ti_3C_2 electrodes at various current densities.

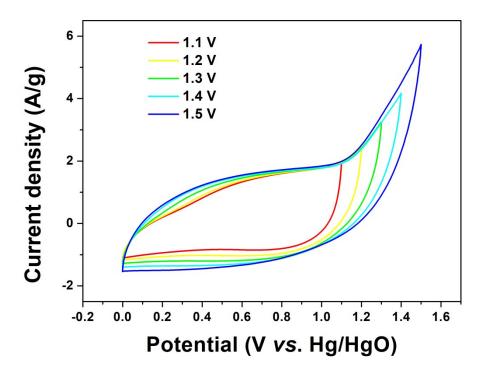


Figure S9. CV curves of the asymmetric supercapacitor at the potential range from 1.1V to

1.5V (the scan rate was 20 mV/s).

Table S1

Comparison of electrochemical performance of different electrodes for supercapacitors.

Materials	Electrolyte	Specific capacitance	Cycling stability	Ref.
CuS	2 M KOH	204 F g ⁻¹ at 2 A g ⁻¹	74%/3000 cycles	[1]
CuS	1 M KOH	378 mF cm ⁻² at 2 mA cm ⁻²	91%/2000 cycles	[2]
CNT/CuS	2 M KOH	122 F g ⁻¹ at 1.2 A g ⁻¹	96%/1000 cycles	[3]
d-Ti ₃ C ₂	1 M KOH	134 F g ⁻¹ at 20 mV s ⁻¹	94%/5000 cycles	[4]
N-doped Ti ₃ C ₂	1 M H ₂ SO ₄	192 F g ⁻¹ at 2 mV s ⁻¹	92%/10000 cycles	[5]
TiO ₂ /Ti ₃ C ₂	6 M KOH	143 F g ⁻¹ at 5 mV s ⁻¹	92%/6000 cycles	[6]
RGO/Ti ₃ C ₂	2 M KOH	154.3 F g ⁻¹ at 2 mV s ⁻¹	85%/6000 cycles	[7]
MnO ₂ /Ti ₃ C ₂	1 M KOH	212 F g ⁻¹ at 1 A g ⁻¹	88%/10000 cycles	[8]
CuS/Ti ₃ C ₂	1 M KOH	282 F g $^{\text{-1}}$ (169 C g $^{\text{-1}}$) at 1 A g $^{\text{-1}}$	90.5%/5000 cycles	This work

d-: delaminated; N-: nitrogen-doped.

References

- 1. J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei and W. Zheng, ACS Applied Materials & Interfaces, 2015, 7, 21735-21744.
- Y.-W. Lee, B.-S. Kim, J. Hong, J. Lee, S. Pak, H.-S. Jang, D. Whang, S. Cha, J. I. Sohn and J. M. Kim, *Journal of Materials Chemistry A*, 2016, 4, 10084-10090.
- 3. T. Zhu, B. Xia, L. Zhou and X. Wen Lou, *Journal of Materials Chemistry*, 2012, **22**, 7851.
- M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, *Science*, 2013, **341**, 1502-1505.
- Y. Wen, T. E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai and L. Wang, *Nano Energy*, 2017, 38, 368-376.
- 6. J. F. Zhu, Y. Tang, C. H. Yang, F. Wang and M. J. Cao, *Journal of the Electrochemical Society*, 2016, **163**, A785-A791.
- C. Zhao, Q. Wang, H. Zhang, S. Passerini and X. Qian, ACS Applied Materials & Interfaces, 2016, 8, 15661-15667.
- 8. R. B. Rakhi, B. Ahmed, D. Anjum and H. N. Alshareef, *ACS Applied Materials & Interfaces*, 2016, **8**, 18806-18814.