Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information for

Reversible Zn-driven Reduction Displacement Reaction in

Aqueous Zinc-ion Batteries

Lutong Shan,^a Jiang Zhou*, ^a Mingming Han, ^a Guozhao Fang, ^a Xinxin Cao, ^a Xianwen Wu*,^b

and Shuquan Liang *,a

a School of Materials Science and Engineering, Central South University, Changsha 410083,

P. R. China. E-mail: zhou_jiang@csu.edu.cn, lsq@csu.edu.cn

b School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P.R.

China. E-mail: wxwcsu2011@163.com

1. Experimental

Synthesis. All the reactants were used as-received without further purification. Typically, 0.3 g of V₂O₅ was mixed with 30 mL deionized water with 4 mL H₂O₂ added dropwise. After stirred at 40°C for 30 min, 398.27 mg of Cu(NO₃)₂·3H₂O was added to the above orange solution with further 30 min stirring at 40°C. Then the mixed solution was transferred into 50 mL Teflon-lined autoclave and heated at 200 °C for 48 h. Finally, the Cu₃(OH)₂V₂O₇·2H₂O nanosheet were obtained after centrifuged several times with alcohol and dried overnight.

Material Characterization. In our research, the X-ray power diffraction (XRD) are applied to determine the phase of the as-prepared $Cu_3(OH)_2V_2O_7\cdot 2H_2O$. And Scanning electron microscopy (SEM, FEI Nova NanoSEM 230m, 10 kV) and transmission electron microscopy (TEM, Titan G2 60-300) are applied to acquire the microcosmic crystal morphologies and sizes. X-ray photoelectron spectroscopy (XPS) spectra were performed on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher).

Electrochemical Measurements. In the typical synthesis, the as-prepared $Cu_3(OH)_2V_2O_7 \cdot 2H_2O$ material were mixed with acetylene black and polyvinylidene fluoride in N-methy-2-pyrrolidone (NMP) in the weight ratio of 70:20:10 to make a slurry, which latter was used to coat the thin stainlesssteel mesh and then dried in a vacuum oven at 80°C for 12h. Then the coin cell assembly was executed in air condition, with the zinc metal as the anode and 3M solution of ZnSO₄ as the electrolyte. The measurements of the specific capacity and rate capability was performed in Land Battery Tester (Land CT 2001A) within the voltage window of 0.4-1.4V (versus Zn/Zn²⁺). Besides, electrochemical workstation (MULTI AUTOLAB M204, Metrohm) was used to measure the cyclic voltammetry (CV) curves at a scan rate of 0.1

mV s⁻¹ during the voltage scale of 0.4-1.4 V (versus Zn/Zn^{2+}) and the electrochemical impedance spectrometry (EIS) from 100 kHz to 10 mHz. Arbin instruments (S/N 170539) was applied to measure the GITT results. The loading of composites for each electrode in this experiment is about 1.2-1.6 mg with an area of 1.1304 cm².

Figure S1 Illustration of the synthesis process of $Cu_3(OH)_2V_2O_7 \cdot 2H_2O$ nanosheet.

2.

Figure S2 The successful light up of LED lamp bank with four aqueous $Zn/Cu_3(OH)_2V_2O_7$ ·2H₂O coin-cells.

Figure S3 (a) The discharge-charge GITT curves and (b) the zinc ion diffusion coefficient of $Cu_3(OH)_2V_2O_7$ ·2H₂O material.

The diffusion coefficient of Zn^{2+} could be measured by using Ganlvanostatic Intermittent Titration Technique (GITT) technique and calculated via the following equation¹⁻⁴:

$$D = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_S}{\Delta E_t} \right)^2$$

In the above equation, t and τ represent the duration of current pulse (s) and relaxation time (s), respectively. L corresponds to Zn^{2+} diffusion length, which is equal to thickness of electrode. ΔE_S and ΔE_t are the steady-state voltage change (V) by the current pulse and voltage change (V) during the constant current pulse (eliminating the voltage changes after relaxation time).

Figure S4 (a) CV curves at various scan rates of 0.1-1.0 mV s⁻¹, (b) Contribution ratios comparison of capacitive effect and diffusion process at various scan rates.

As elucidated,⁵ the kinetic of capacitive contribution can be obtained through calculating the CV curves at different scan rates. It is ought to be noted that there is a power law that links the scan rate with the current, which is: $i=av^b$. Here, the equation can be converted as: log(i)=log(a)+b*log(v), henceforth, by calculating the value of log(i) and log(v), we can reach a precise *b* value via a consequent mathematical fitting. As known, if the value of *b* is 0.5, we can summarize that the capacity is fully contributed by diffusion process, while the *b* value is 1, we can conclude that the capacity is ruled by the capacitive effect.

Furthermore, there is an equation that matches the two factors of diffusion-controlled contribution and the capacitive effects with the current, which is: $i=k_1v^{1/2}+k_2v$.

In this formula, when the k_1 value reaches for 0, then it turns to be: $i = k_2 v$, which is similar to i=av, and we can reasonably speculate that the capacity is mainly ascribed to capacitive effect. The same way, when the k_2 value is close to 0.5, which makes the equation agree well with $i=av^{0.5}$, then it can be deduced that diffusion-controlled process mostly account for capacity, typically. As shown in **Fig. S4b**, with the increasing scan rates, the capacitive contribution ratio emerges an increasing trend.

Figure S5 *Ex-situ* XRD measurements at different discharge-charge states of $Cu_3(OH)_2V_2O_7\cdot 2H_2O$ material with carbon cloth as current collector.

Figure S6 The Zn 2p spectra at various states of pristine, completely discharged and completely charged.

8.

Figure S7 Zn²⁺ ions EDS element mapping of $Cu_3(OH)_2V_2O_7\cdot 2H_2O$ product at (a) fully discharged and (b) fully charged state.

Figure S8 The EIS results and correspond equivalent electrical circuits of $Cu_3(OH)_2V_2O_7$ ·2H₂O cathode at (a) pristine state and (b) after 5 cycles.

 R_s represents the electrolyte resistance, R_f suggests the resistance of SEI layer and R_{ct} represents the charge-transfer resistance. In Fig. S8, the EIS results and correspond equivalent electrical circuits indicate that SEI layer does not exist at pristine state and appears after 5 galvanostatic discharge-charge cycles, contributing to the resistance (R_f). The primary EIS simulation parameters can be seen in Table S1. After 5 cycles, R_s remains stable, and R_{ct} manifests significant decrease from 41.02 Ω to 20.83 Ω , which could be attributed to the formation of metallic Cu⁰ upon discharge as well as the activation process.^{6, 7}

Figure S9 The discharge-charge profiles at 1st and 100th cycle of Cu₃(OH)₂V₂O₇·2H₂O at 1 A

g⁻¹.

Samples	$R_{ m s}\left(\Omega ight)$	$R_{ m f}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$
pristine	6.178	-	41.02
5 cycles	5.714	3.252	20.83

11. Table S1 The Primary EIS Simulation Parameters of $Cu_3(OH)_2V_2O_7 \cdot 2H_2O$ electrodes

Reference

- A. K. Jordan Anderson, Diego J. Di 'az and Sudipta Seal, *J. Phys. Chem. C*, 2010, 114, 4595–4602.
- 2. B. A. B. a. R. A. H. C. JohnWen, J. Electrochem. Soc., 1979, 126, 2258-2266.
- 3. W. W. a. R. A. Huggins, J. Electrochem. Soc., 1977, 124, 1569-1577.
- 4. D. T. Ngo, H. T. T. Le, C. Kim, J.-Y. Lee, J. G. Fisher, I.-D. Kim and C.-J. Park, *Energy Environ. Sci.*, 2015, **8**, 3577-3588.
- 5. W. Wen, J.-M. Wu, Y.-Z. Jiang, L.-L. Lai and J. Song, Chem, 2017, 2, 404-416.
- 6. W. Ren, H. Zhang, C. Guan and C. Cheng, *Adv. Funct. Mater.*, 2017, 27, 1702116.
- J. Xu, M. Wang, N. P. Wickramaratne, M. Jaroniec, S. Dou and L. Dai, *Adv. Mater.*, 2015, 27, 2042-2048.