Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Support Information

Surface P-N bonds induced local spatial charge separation and enhanced photocatalytic hydrogen production in graphitic carbon nitride

Xiao Tian,^a Ying-jie Sun,^a Jiang-yan He,^a Xiao-jing Wang,^a Zhao Jun,^a Shi Zhang Qiao^b and Fa-tang Li^{*a}

^a College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, China. Email: lifatang@126.com; propyl@163.com.

^b School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.

Fig. S1 The process for preparation of P-N bond modified g-C₃N₄ in the tube furnace.

Fig. S2 SEM images of (a)CN and (b) PCN-2

Fig. S3 P 2p spectra of PCN-2 after Ar⁺ for 40s

Fig. S4 (a)Ball-and-stick model of monolayer from top and side views (a) g-C₃N₄,
(b)P=O doped g-C₃N₄, (c)P-OH doped g-C₃N₄.

Fig. S5 (a) PDOS of monolayer $g-C_3N_4$, and band decomposed charge density of (b) VBM and (c) CBM of monolayer $g-C_3N_4$, respectively. The isovalue is 0.0007 au

Sample	N/P atomic ratio	Yield of post-calcination
PCN-1 (1:5-400-3h)	100:1	78%
PCN-2 (1:7.5-400-3h)	79:1	70%
PCN-3 (1:10-400-3h)	75:1	67%
PCN-4 (1:7.5-300-3h)	123:1	96%
PCN-5 (1:7.5-350-3h)	110:1	95%
PCN-6 (1:7.5-450-3h)	68:1	65%
PCN-7 (1:7.5-400-2h)	85:1	75%
PCN-8 (1:7.5-400-4h)	71:1	67%

Table S1 The surface N/P atomic ratio and yield of the PCN samples tested by XPS

Table S2 The performance comparison of the catalysts from the different references.

Catalyst	AQE at 420nm	Photocatalytic H ₂ evolution Rate (µmol·h ⁻¹)	Amount of photocatalyst (mg)	Reference
Suface P-N bonds modified g-C ₃ N ₄	8.96%	1.8mmol·h ⁻¹ ·g ⁻¹	30	This work
P -Doped C ₃ N ₄ nanosheet	3.56%	1596µmol·h ⁻¹ ·g ⁻¹	50	1
P-doped g-C ₃ N ₄ hexagonal microtubes	5.68%	670µmol·h ⁻¹ ·g ⁻¹	100	2
Carbon rich g-C ₃ N ₄	4.52%	39.6 µmol·h ⁻¹	10	3
P and cyano groups modified g-C ₃ N ₄	1.3%	77.9µmol·h ⁻¹ ·g ⁻¹	100	4
Surface hydroxylation modified g-C ₃ N ₄	9.2%	$0.31 \text{ mmol}\cdot\text{h}^{-1}\cdot\text{g}^{-1}$	50	5
Carbon-doped g-C ₃ N ₄	6.8%	125.1µmol·h ⁻¹ ·g ⁻¹	20	6
non-metal group doping g-C ₃ N ₄	7.45%	$\approx 1.3 \text{ mmol} \cdot h^{-1} \cdot g^{-1}$	100	7
P, Na Co-doping g-C ₃ N ₄	-	$114.2 \mu mol \cdot h^{-1}$	50	8
Ammonia etching g- C ₃ N ₄	-	317.6µmol·h ⁻¹	50	9
P-doped g-C ₃ N ₄ nanotubes	-	303.97µmol·h ⁻¹ ·g ⁻¹	30	10

References

1. J. R. Ran, T. Y. Ma, G. P. Gao, X. W. Du, and S. Z. Qiao. *Energy. Environ. Sci.*, 2015, 8, 3708-3717.

2. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan and H. Fu, Angew. Chem. Int. Ed., 2016, 55, 1830-1834.

3. Y. F. Li, M. Yang, Y. Xing, Z. C. Liu, Y. Yang, X. Wang, and S. Y. Song. *Small.*, 2017, 13, 1701552.

4. X. L. Liu, P. Wang, H. S. Zhai, Q. Q. Zhang, B. B. Huang, Z. Y. Wang, Y. Y. Liu, Y. Dai, X. Y.

Qin, and Z. Y. Zhang. Appl. Catal. B-Environ., 2018, 232, 521-530.

5. S. X. Yu, J. Y. Li, Y. H. Zhang, M. Li, F. Dong, T. R. Zhang and H. W. Huang, *Nano. Energy*, 2018, 50, 383-392.

6. Z. Chen, T. Fan, X. Yu, Q. L. Wu, Q. Zhu, L. Zhang, J. Li, W. Fang and X.D. Yi, *J. Mater. Chem. A*, 2018,6, 15310-15319.

7. W. Xing, G. Chen, C. Li, Z. Han, Y. Hu and Q. Meng, Nanoscale., 2018,10, 5239-5245

8. S. W. Cao, Q. Huang, B. C. Zhu and J. G. Yu, J. Power. Sources., 2017, 351, 151-159.

9.P. J. Yang, J. H. Zhao, W. Qiao, L. Li, and Z. P. Zhu, Nanoscale., 2015, 7, 18887-18890.

10. B. Liu, L. Q. Ye, R. Wang, J. F. Yang, Y. X. Zhang, R. Guan, L. H. Tian and X. B. Chen, *Acs Appl. Mater. Inter.*, 2018, 10, 4001-4009.