Supporting Information

High-performance Graphene Oxide Nanofiltration Membrane with Continuous Nanochannels Prepared by in Situ Oxidation of MXene

Ruiyi Han^a and Peiyi Wu*ab

^aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, PR China ^bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China

*Authors for Correspondence: peiyiwu@fudan.edu.cn

Figure S1. TEM image of GO

Figure S2. XPS spectra of MXene and TiO_2 derived from oxidation of MXene.

Figure S3. The EDS mapping of surface of HGM10.

Figure S4. 3D height AFM images of (a) HG, (b) HGM10, (c) HGM20, (d) HGM30.

Figure S5. XRD patterns with partial enlarged detail of HG, HGM10, HGM20, HGM30.

Figure S6. (a) Ti 2p XPS spectra of GO/MXene30 and back side of exfoliated HGM30, (b) XRD patterns, (c) Raman spectra of back side of exfoliated HGM30.

Figure S7. Rejection rate of HGM30 for four different salt ions.

Figure S8. Pure water flux and rejection rate of HGM30 for RhB under different pressure.

Membranes	Fabrication	Water	Feed solution	Rejection	Ref.
	method	Permeability		(%)	
		(L m ⁻² h ⁻¹ bar ⁻¹)			
rGO-MWCNT	Pressure-assisted	52.7	MB (0.01 g L ⁻¹)	99.8	1
/PC	filtration		AO7 $(0.03 \times 10^{-3} \text{ M})$	99.4	
			RhB (0.02×10^{-3} M)	100	
Base-refluxed	Vacuum filtration	21.8	MB $(0.02 \times 10^{-3} \text{ M})$	99.8	2
rGO/PVDF			DR 81 (0.02×10^{-3} M)	99.9	
			RhB (0.02×10^{-3} M)	78	
rGO-MWNT	Vacuum filtration	11.3	DY $(0.02 \times 10^{-3} \text{ M})$	99	3
/PVDF			MO (0.05 g L ⁻¹)	96	
CDs-GO/MCE	Vacuum filtration	408–434	MB (10ppm)	99.5	4
			MO (10ppm)	99.2	
			RhB (10ppm)	99.7	
GO/Modified -	GO ink Printing	15-85	MO $(0.02 \times 10^{-3} \text{ M})$	95.9	5
PAN			AB 45 (0.02×10 ⁻³ M)	99.9	
GO-TiO ₂ /PC	Vacuum filtration	~7	MO (10 ppm)	100	6
			RhB (10 ppm)	100	
Nanostrand	Vacuum filtration	695	EB (15 × 10 ⁻⁶ M)	83.5	7
channeled GO/PC					
GO/Nylon 66	Shear alignment	71	MR (10ppm)	90	8
			MO,OG,MB (10ppm)	>90	
HGM30	Vacuum filtration	89.6	RhB (10ppm)	99.3	This
			MB (10ppm)	97.6	work
			CV (10ppm)	99.1	
			NR (10ppm)	98.6	

 Table S1. Separation performance of HGM30 and other representative works published recently.

References

- K. Goh, W. Jiang, H. E. Karahan, S. Zhai, L. Wei, D. Yu, A. G. Fane, R. Wang and Y. Chen, Advanced Functional Materials, 2016, 25, 7348-7359.
- 2. Y. Han, Z. Xu and C. Gao, Advanced Functional Materials, 2013, 23, 3693-3700.
- 3. Y. Han, Y. Jiang and C. Gao, Acs Appl Mater Interfaces, 2015, 7, 8147.
- 4. W. Wang, E. Eftekhari, G. Zhu, X. Zhang, Z. Yan and Q. Li, *Chemical Communications*, 2014, **50**, 13089-13092.
- 5. M. Fathizadeh, H. N. Tien, K. Khivantsev, J. T. Chen and M. Yu, *Journal of Materials Chemistry A*, 2017, **5**.
- 6. C. Xu, A. Cui, Y. Xu and X. Fu, *Carbon*, 2013, **62**, 465-471.
- 7. H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu and X. Peng, *Nature communications*, 2013, 4, 2979.
- A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya and M. Majumder, *Nature communications*, 2016, 7, 10891.