Electronic Supplementary Information

A "Ship-in-a-Bottle" Strategy to Fabricate Highly Crystallized Nanoporous Graphitic C₃N₄ Microspheres under Pressurized Condition

Yinsong Si, ^a Zongzhao Sun, ^b Limin Huang, ^b Min Chen*^a and Limin Wu*^a

^a Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China

^b Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.

E-mail: chenmin@fudan.edu.cn, lmw@fudan.edu.cn

Fig. S1 TEM images for Np-CNMs with different diameters by using different HM-SiO₂ as the vessels. (a) 140, (b) 244, (c) 377, (d) 397 nm.

Fig. S2 The TEM images for Np-CNMs obtained at (a) 0, (b) 0.03 and (c) 0.15 MPa.

Fig. S3 Wavelength-dependent hydrogen evolution obtained using band-pass filters (a) at 420, 450, 500, 600 nm for Bulk-0.08, Np-CNMs-0.08 and (b) at 500, 600 nm for other Np-CNMs, using Bulk-0.08 as the reference.

Fig. S4 (a) Electrochemical impedance spectroscopies and (b) transient photocurrent densities for bulk $g-C_3N_4$ obtained under different atmospheric pressure.

Fig. S5 Valence band XPS spectra for Np-CNMs-0.08.