## Electronic Supplemental Information for:

## Ammonium chloride-metal hydride based reaction cycle for vehicular applications

Helen G. Stewart,<sup>a</sup> Terry D. Humphries,<sup>a</sup> Drew A. Sheppard,<sup>a</sup> Mariana S. Tortoza,<sup>a</sup> M. Veronica Sofianos,<sup>a</sup> Shaomin Liu,<sup>b</sup> and Craig E. Buckley<sup>a</sup>

- a. Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- b. Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.

**Table S1.** Predicted reaction pathways and calculated standard enthalpy of reaction for each of the systems studied.

| Sample Reaction Path                                                                                                                                                 | Calculated ⊿H° at<br>25°C/mol NH4Cl of<br>reaction (kJ/mol) | Theoretical reaction weight loss<br>(%) |                 |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------|-----------|
|                                                                                                                                                                      |                                                             | $H_2$                                   | NH <sub>3</sub> | Total     |
| $\begin{array}{l} NH_4Cl_{(s)} + NaH_{(s)} \\ \rightarrow NaCl_{(s)} + H_{2(g)} + NH_{3(g)} \end{array}$                                                             | -86.1                                                       | 2.6                                     | 21.9            | 24.6      |
| $\begin{array}{c} NH_4Cl_{(s)} + NaH_{(s)} + PdCl_{2(s)} \\ \rightarrow NaCl_{(s)} + H_{2(g)} + NH_{3(g)} + PdCl_{2(s)} \\ (1mol\% \ / \ 10 \ mol \ \%) \end{array}$ | -86.1                                                       | 2.6/2.1                                 | 21.7/17.9       | 24.3/20.0 |
| $\begin{array}{l} NH_4Cl_{(s)} + NaNH_{2(s)} \\ \rightarrow NaCl_{(s)} + 2NH_{3(g)} \end{array}$                                                                     | -64.6                                                       | 0.0                                     | 36.8            | 36.8      |
| $2NH_4Cl_{(s)} + MgH_{2(s)}$<br>$\rightarrow MgCl_{2(s)} + 2H_{2(g)} + 2NH_{3(g)}$                                                                                   | -15.7                                                       | 3.0                                     | 25.6            | 28.6      |
| $\begin{array}{l} NH_4Cl_{(s)}+LiH_{(s)}\\ \rightarrow LiCl_{(s)}+H_{2(g)}+NH_{3(g)} \end{array}$                                                                    | -49.1                                                       | 3.3                                     | 27.7            | 31.0      |
| $\begin{array}{c} NH_4Cl_{(s)} + LiNH_{2(s)} \\ \rightarrow LiCl_{(s)} + H_{2(g)} + NH_{3(g)} \end{array}$                                                           | -6.1                                                        | 0.0                                     | 44.5            | 44.5      |
| $2NH_4Cl_{(s)} + CaH_{2(s)}$ $\rightarrow CaCl_{2(s)} + 2H_{2(g)} + 2NH_{3(g)}$                                                                                      | -40.6                                                       | 2.7                                     | 22.8            | 25.5      |



**Fig. S1.** In situ SR-XRD data for NH<sub>4</sub>Cl. • LT-NH<sub>4</sub>Cl and • HT-NH<sub>4</sub>Cl.  $\Delta T/t = 5 \text{ °C/min}$ .  $\lambda = 1.0003896(1) \text{ Å}$ .



**Fig. S2.** In situ SR-XRD data for  $NH_4Cl + NaH$ . • LT- $NH_4Cl$ , • NaH, • NaOH, • NaCl and • HT- $NH_4Cl$ .  $\Delta T/t = 5 °C/min$ .  $\lambda = 1.0003896(1) Å$ .



**Fig. S3.** XRD data for NH<sub>4</sub>Cl + LiH collected at room temperature. (a) Data collected directly after ball milling on Bruker AXS D8 Advance Discover XRD System ( $\lambda = 1.5406$  Å), (b) data collected 8 months after ball milling using Synchrotron radiation ( $\lambda = 1.0003896(1)$  Å). \* = NH<sub>4</sub>Cl, ! = LiH, + = LiCl.



**Fig. S4.** In situ SR-XRD data for NH<sub>4</sub>Cl + LiH. • LT-NH<sub>4</sub>Cl, • LiH, • LiCl and • HT-NH<sub>4</sub>Cl.  $\Delta$ T/t = 5 °C/min.  $\lambda$  = 1.0003896(1) Å.



**Fig. S5.** TGA and first derivative of the TGA data for NH<sub>4</sub>Cl + LiH.  $\Delta T/t$  = 5 °C/min.



**Fig. S6.** In situ SR-XRD data for  $NH_4Cl + NaNH_2$ . • LT- $NH_4Cl$ , •  $NaNH_2$ , • NaCl, •NaOH, and • HT- $NH_4Cl$ .  $\Delta T/t = 5$  °C/min.  $\lambda = 1.0003896(1)$  Å.



**Fig. S7.** In situ SR-XRD data for  $NH_4Cl + LiNH_2$ . • LT- $NH_4Cl$ , • Li $NH_2$ , • Li<sub>2</sub>O, • LiCl, • HT- $NH_4Cl$  and • unknown.  $\Delta T/t = 5 \text{ °C/min}$ .  $\lambda = 1.0003896(1) \text{ Å}$ .



**Fig. S8.** In situ SR-XRD data for  $NH_4Cl + MgH_2$ . • LT- $NH_4Cl$ , •  $MgH_2$ , • Mg,  $\land$   $(NH_4)_2MgCl_4$ , • HT- $NH_4Cl$ , + unknown,  $\land$  unknown,  $\land$  unknown and  $\land MgCl_2$ .  $\Delta T/t = 5 \ C/min$ .  $\lambda = 1.0003896(1) \ Å$ .



**Fig. S9.** In situ SR-XRD data for NH<sub>4</sub>Cl + CaH<sub>2</sub>. • LT-NH<sub>4</sub>Cl, • CaH<sub>2</sub>,  $\land$  NH<sub>4</sub>CaCl<sub>3</sub>,  $\blacksquare$  unknown,  $\blacksquare$  unknown, • CaHCl and •CaCl<sub>2</sub>.  $\Delta T/t = 5 \text{ °C/min}$ .  $\lambda = 1.0003896(1) \text{ Å}$ .



**Fig. S10.** In situ SR-XRD data for  $NH_4Cl + NaH + PdCl_2$  (1 mol%). • LT- $NH_4Cl$ , • NaH, • NaOH, • NaCl, • Pd and • HT- $NH_4Cl$ .  $\Delta T/t = 5 °C/min$ .  $\lambda = 1.0003896(1) Å$ .



**Fig. S11.** In situ SR-XRD data for NH<sub>4</sub>Cl + NaH + PdCl<sub>2</sub> (10 mol%). • LT-NH<sub>4</sub>Cl, • NaH, •NaOH, • NaCl,  $\blacktriangle$  PdCl<sub>2</sub>, • Pd and • HT-NH<sub>4</sub>Cl.  $\Delta$ T/t = 5 °C/min.  $\lambda$  = 1.0003896(1) Å.