Supporting Information

A delicately-designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries

Peng Wang,^{a, b‡} Jingchao Chai,^{a‡} Zhonghua Zhang,^{a, b} Huanrui Zhang,^a Yue Ma,^a Gaojie Xu,^a Huiping Du,^a Tianmeng Liu,^{a, b} Guicun Li^{b, *} and Guanglei Cui^{a, *}

Fig. S2. The diagram of the preparation process for PVN-GPE.

Fig. S3. The surface morphology of nonporous PVN-PET prepared without EG.

Fig. S4. a) The pore size distribution of porous PVN-PET and b) the electrolyte uptake of PP separator, porous and nonporous PVN-PET.

Fig. S5. a) AC impedance spectra comparison of porous and nonporous PVN-GPE; b) rate capability comparison of $LiNi_{0.5}Mn_{1.5}O_4/Li$ cells using porous and nonporous PVN-GPE at 25 °C.

Fig. S6. a) AC impedance spectra comparison b) linear sweep voltammograms and c) the electrolyte uptake of PVN-GPE prepared with different molar ratios of VC to AN.

Fig. S7. Current-time curves following a DC polarization of 0.005 V for a) PVCA-GPE and b) PAN-GPE. Insets are Nyquist profiles of the electrochemical impedance spectroscopy response before and after polarization.

Fig. S8. Time evolution of the interfacial resistances within a month for a) PVCA-GPE and b) PAN-GPE. Insets are the corresponding EIS Nyquist plots.

Fig. S9. The chronopotentiometry result of the Li/PVN-GPE/Li symmetric cell at room temperature with a current density of 2 mA cm⁻² for 1 hr.

Fig. S10. a) Coulombic efficiencies and b) charge/ discharge curves of the 20^{th} and 200^{th} cycles for LiNi_{0.5}Mn_{1.5}O₄/graphite full cells assembled with PVN-GPE and LE.

Fig. S11. Photographs of the surface of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes and electrolyte membranes cycled in PVN-GPE and LE based cells after 200 cycles under 0.5 C.

The LiNi_{0.5}Mn_{1.5}O₄ electrodes and electrolyte membranes cycled in PVN-GPE and LE are carefully dismantled from the discharged full cells after 200 cycles under 0.5 C. The PP membrane cycled in LE is smoothly separated from the LiNi_{0.5}Mn_{1.5}O₄ electrode, whereas the PVN-GPE attaches tightly to the LiNi_{0.5}Mn_{1.5}O₄ electrode.

Fig. S12. Magnified views of selected regions in Fig. 5b. The black, red and green lines stand for pristine LiNi_{0.5}Mn_{1.5}O₄ cathodes, LiNi_{0.5}Mn_{1.5}O₄ cathodes cycled in LE and PVN-GPE based cells, respectively.

Fig. S13. Charge/discharge curves of the 15^{th} and 200^{th} cycles for $LiNi_{0.5}Mn_{1.5}O_4/Li$ batteries assembled with PVN-GPE and LE.

Fig. S14. The distribution of Young's modulus for PVN-GPE.

Table S1. The calculated values of ionic conductivity, decomposition potential and electrolyte uptake of PVN-GPE prepared with different molar ratios of VC to AN.

Molar ratio of VC	Ionic conductivity	Decomposition	Electrolyte uptake
to AN	/ S cm ⁻¹	potential / V	/ %
1:2	1.32×10^{-4}	5.3	115
1:1	2.63 ×10 ⁻⁴	5.2	180
2:1	5.4 ×10 ⁻⁴	4.9	221

Table S2. The calculated values of VTF fitting parameters for PAN-GPE, PVCA-GPE and PVN-GPE.

	$A/S \cdot K^{\frac{1}{2}} \cdot cm^{-1}$	Ea/eV	T ₀ /K
PAN-GPE	0.0037	0.024	209
PVCA-GPE	0.00592	0.030	196
PVN-GPE	0.00611	0.021	206

Table S3 Fitting results of R_b , R_{SEI} and R_{ct} of $LiNi_{0.5}Mn_{1.5}O_4$ /graphite full cells assembled with PVN-GPE and LE at the 20th and 200th cycles.

Elcetrolyte	Cycle	R_b/Ω	R_{SEI}/Ω	R_{ct}/Ω
DVNL CDE	20 th	8.61	27.39	58.4
PVN-GPE	200 th	9.02	33.98	73.1
LE	20 th	1.32	29.03	93.52

200 th	1 67	50.1	181 1
200	1.07	50.1	101.1

Table S4.	The cyclab	ility comp	arison o	of LiNi _{0.}	$_{5}Mn_{1.5}O_{4}$	based	full ce	ells wi	th th	hose c	of
the represe	entative repo	orts.									

Battery system	Electrolyte	Cyclability (Retention	Ref.	
(voltage range)		cycles, rate)		
LiNi _{0.5} Mn _{1.5} O ₄ /graphite	DVN GDE	93.2% after 200	This	
(3.5–5 V)	I VIN-OI E	cycles, at 0.5 C	work	
LiNi _{0.5} Mn _{1.5} O ₄ /graphite	poly(methylethyl α-	91.5% after 100	17	
(3.5–4.9 V)	cyanoacrylate) based GPE	cycles, at 0.5 C	1 /	
$LiNi_{0.5}Mn_{1.5}O_4/Li_4Ti_5O_{12}$	DAMM based get electrolyte	88.4% after 100	10	
(3.5–5 V)	FAMINI Dased get electrolyte	cycles, at 0.5 C	10	
LiNi _{0.5} Mn _{1.5} O ₄ /graphite	LiODFB:LiBF ₄ (4:1, by mol)	95.2% after 100	26	
(3.8–5 V)	/EC:EMC:DMC (1:1:1, by wt)	cycles, at 25 °C	50	
LiNi _{0.5} Mn _{1.5} O ₄ /graphite	1 wt% LiBOB+1 M	80% after 85 cycles, at	27	
(3.4–4.8 V)	LiPF ₆ /EC:DEC (1:2, by wt)	0.1 C	31	
LiNi _{0.5} Mn _{1.5} O ₄ /graphite	EEC based electrolate	~100% after 100	20	
(3.5–4.9 V)	FEC-based electrolyte	cycles, at C/3, at 55 °C	38	